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Non utility maximizing behaviour: 

Probabilistic choice in a budget set “box”. 

Properties of expected demand functions. 
  
   
 
Abstract. In this paper we use  some(even a convex) probabilistic frequency functions  
in two choice variables defined over the budget set” box” and calculate the expected 
demand to study its properties The expected demands have own price negativity , are 
normal goods and are homogeneous of degree zero*. The detailed properties of  
deterministic demand functions can be replaced with similar properties  for some 
expected demand functions the latter found with fewer and behaviourally less 
restrictive assumptions. To assume a deterministic utility function to be maximized is 
more restrictive in a behavioural sense than assuming random choice between some 
boundaries. 
 
 
Keywords: Non-maximising behaviour, Bounded rationality, Random choice, 
Expected demand. 
 
JEL classification: C60, D01, D11 
 
 
Introduction 
 
In the theory of choice based on maximization of a strictly increasing and strictly 
quasiconcave utility function it  is proved that demand functions are homogeneous of 
degree zero and that their substitution matrix is symmetric and negative semidefinite. 
In this paper we use  some probabilistic frequency functions  in two choice variables 
defined over the budget set” box” and calculate the expected demand to study its 
properties. We assume two sets of choice frequency functions 
 
We first try a uniform distribution defined on a  budget set “box” with an upper 
bound budget line and lower bounds on the consumption of both of the goods.  
 
We then choose some simple increasing frequency functions guided by the ordinary 
microeconomic textbook preferences such as perfect complements, Cobb-Douglas, 
quasilinear and linear, all in quasiconcave utility form and concave preferences in 
convex utility form. 
Some motivations for the choice of distribution can be found in section 2A.  
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* In this text the words referring to traditional theory like normal goods or own price 
negativity etc should be seen as average (expected) properties. 
 
 
 
 
We find that 
Homogeneity of degree zero holds for all expected demand functions. 
The expected demand functions corresponding to the chosen frequency functions 
also have own price negativity and are normal goods. 
Note that the convex frequency( utility) function(concave preferences)also have 
these  properties and as such extends them  outside the class of  quasiconcave 
(utility) functions used in traditional theory. 
For the Cobb-Douglas and linear frequency functions the expected substitution 
matrix is also symmetric and negative definite. 
The calculated average expenditure expressions and are relatively simple 
(price independent)for the perfect complements, Cobb-Douglas and linear  frequency 
functions and more complex(price dependent) for the others. 
We compare the expected solution (all interior solutions x>0, y>0)with the utility 
maximising solution for one income price combination. For the same  income price 
combination we also calculate some own price elasticities and find the uniform and 
perfect complements to be inelastic (>-1), Cobb-Douglas to be unitary elastic(=-1), 
quasilinear  is elastic (<-1 ) the  linear is more elastic and the convex even more 
elastic. The average expenditure range from 0,75m up to 0,93m. The latter number 
comes from the uniform distribution (the average expenditure is relative close to m 
(budget) due to the tight lower bounds). Identify lower bounds and the choice 
and/or preferences inside the “box” matter less.  
There is no need to assume a utility maximising consumer to get these central 
results of economic theory if we accept that they are average (expected) results. 
If one for various reasons don’t want to use preference (utility) maximization but still 
want to use the budget idea and find economic results similar to traditional theory one 
way we suggest is to use a probabilistic choice approach to find expected demand 
functions. 
One reason that comes to mind is to separate the study of consumer choice into a 
behavioural part (consumer behaviour) and normative (prescriptive) part. The 
normative part may contain improvement of consumer choice by better information of 
prices and quality, optimal search theories of prices and quality, utility maximization 
with more complex preferences and constraints, static or dynamic, deterministic or 
stochastic etc. The use of optimization methods in economics, operations analysis, 
applied mathematics etc reflects the important aspect of helping forming better 
decisions in the world but does not necessarily mean that they are good models 
for explaining (describing) actual economic behaviour. See below for some 
reflections of leading economists.  
The idea above is of course possible to use with other bounding upper constraints 
such as time constraints. To introduce quantity taxes and subsidies in the budget line 
to allow for economic policy is also possible.  It might further be useful in other areas 
of economics where bounding constraints are essential and the maximization 
assumption is questionable. 
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Contents 
We start in section 1 by introducing the properties of demand functions in utility 
maximizing theory and refer to some critical remarks and alternative ideas by some  
economists. 
In section 2A we search for properties of expected demand through a look at 
traditional theory. We also discuss the choice of frequency functions. 
In section 2B results for a uniform distribution defined over a lower and upper  
bounded set are given. In Section 2C we find properties of expected demand functions 
using a probabilistic choice idea for some specific frequency functions.  
In the appendix we present some calculations (mostly integrations) in more detail. 
An expression for average expenditure can be found in the appendix. 
We also in the appendix give expected values, comparison with the utility maximising 
solution, own price elasticity values and average expenditure values for one income 
price combination.  
 
1 Properties of demand functions in the traditional theory of choice 
 
In the theory of consumer behaviour we find the following properties of demand 
functions 
 
The demand functions 
 

x

j

( , , )

( , , )
are 
i)homogeneous of degree 0 in prices and money(budget) (p , , ) ( , )
(Varian 1992 p 99) and ii)
the substitution matrix

x ( , ) ( , )
( )

is a symmetric, negative semidef

x y

x y

y

j
i

i

x p p m

y p p m

p m p m

p m x p m
x

p m

=

∂ ∂
+

∂ ∂
inite matrix.

 

Varian 1992 p 123 (note the change of notation here due to the quotation–in the rest 
of the text we use (x ,y) for the two goods) 
The details of the two goods case are taken up in section 2. 
These traditional results are proved using the assumption of preference (utility) 
maximization subject to a budget constraint. 
 
Some critical remarks against the mainstream ideas, extensions and alternatives 
have been given.  
 
We quote Varian 1992 p 123  
“this is a rather nonintuitive result: a particular combination of price and income 
derivatives has to result in a negative semidefinite matrix. However it follows 
inexorably from the logic of maximizing behaviour.” 
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Stigler (1961) (Nobel price winner) on price dispersion as one measure of ignorance 
about the market and the introduction of a probabilistic search theory. 
 
Herbert Simon (1965) (Nobel price winner) on “bounded rational behaviour”. 
 
Barten (1969) on empirical tests of the traditional theory of demand.  
According to Klevmarken (1979 ) the classical theory of demand is rejected. 
 
Kahneman - Tversky (1974) (Kahneman Nobel price winner) on behavioural elements 
in economic choice.  
We now have a new field of research in economics – behavioural economics and 
subfields such as behavioural finance. 
 
Myerson (1999) p 1069 “This assumption of perfect rationality is certainly imperfect 
as a description of real human behaviour”  
(Myerson Nobel price winner) 
 
2 Properties of expected demand functions using a probabilistic choice idea. 
 

2A Searching for properties of expected demand through a look at traditional 
theory and reflections on the choice of frequency functions.  
 
The results of traditional utility maximizing approach in the case of two goods 
 
The demand functions are homogeneous of degree zero in prices and budget 
 

( , , ) ( , , ) for 0

( , , ) ( , , ) for 
x y x y

x y x y

x p p m x p p m

y p p m y p p m 0

λ λ λ λ

λ λ λ λ

= >

= >
 

  
and  the substitution matrix  
 

x y

x y

x x
p p x x y
y y y m m
p p

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ⎡ ⎤ ∂ ∂⎡ ⎤⎢ ⎥ + ⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦
⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

 

 
is symmetric and negative semidefinite.  
In the traditional theory the interior solutions (x>0, y>0) satifies the budget 
balancedness property  

( , , ) ( , , )x x y y x yp x p p m p y p p m m+ =  
This property differentiated gives the conditions of Engel and Cournot 
aggregation.  Engel and Cournot aggregation plus symmetry of the substitution 
matrix can be used to prove homogeneity. In that sense budget balancedness plus 
negative semi definiteness and symmetry of the substitution matrix are the 
independent properties  of demand functions. 
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These properties of demand functions are usually proved using an increasing quasi 
concave utility function. For more details see Shone 1975 pp 88-91 and Jehle – Reny 
2001 pp 82-83. 
 
 

 
Search for properties of expected demand functions 
 
One way is to replace x and y with their expected values E(x) and E(y) the reference 
properties could be  
 
homogeneity 
 

( ( , , )) ( ( , , )) for 0

( ( , , )) ( ( , , )) for 0
x y x y

x y x y

E x p p m E x p p m

E y p p m E y p p m

λ λ λ λ

λ λ λ λ

= >

= >
 

and symmetry and negative semidefiniteness of the following matrix  of expected 
values 

x y

x y

Ex Ex
p p Ex Ex Ey
Ey Ey Ey m m
p p

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ⎡ ⎤ ∂ ∂⎡ ⎤⎢ ⎥ + ⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦
⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

 

 
In the probabilistic approach we will have the expected expenditure  

( )x yE p x p y m+ <  
so the budget balancedness property in expected values 

( )x y  E p x p y m+ =  
is not valid ( and therefore not the average Engel and Cournot restrictions).  
On the other hand we might find the other properties above in some cases. 
 
What type of  choice frequency functions might be reasonable? 
 
i) Specify outer limits as in section 2B and assume a uniform distribution. The latter 
assumption might reflect our ignorance of what determines the choice inside the 
“box”. It could also be that choice is equally likely to take place everywhere inside the 
“box”. The assumption also makes for simple calculations. If the “choice” set is very 
small, as when we have tight lower bounding constraints, a uniform distribution could 
be used as an approximation (see appendix for some numerical values). We are 
concentrating on the upper and lower bounds of the budget set “box” . If we know that 
choice is taken place in the “box” of the budget set we know that expected choice 
changes when the walls (budget line) and lower bounds of the “box” changes. The 
focus is on the boundaries of the “box” and not on the preferences inside it (assuming 
they exist). 

 
ii) Specify monotonous increasing frequency functions as in section 2C to relate to 
traditional utility maximizing theories. If preferences with such regular properties 
exists this might be reflected in choice frequencies. The consumer may strive for a 
maximization of his preferences seen in the probability of choice. 
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iii)Use specific frequency functions found elsewhere such as theories from 
behavioural sciences or behavioural economics. These functions can be integrated 
over the “box” to relate them to economic variables. . In waiting for a “final theory”, 
which of course is an illusion, probability formulated choice gives a link between 
traditional theory of negativity and homogeneity and theories of behaviour within the 
“box”. 
If a theory is based on monetary variables like price dependent preferences in utility 
theory we can have price dependent frequency functions and integrate them to find 
expected demand. The result might be non-homogenous or even non-negative 
expected demand functions but if we know more then we know more. One case of 
non-homogeneity is the money illusion (Fehr and Tyran 2001 p1240). 
 
iv) Estimate choice frequencies.  
We do not assume that choice is decided by utility maximization which usually gives 
a choice at the border of the budget set. If choice reflects attempts to maximize utility 
then the estimated frequency function will be heavily weighted and non-symmetric 
near the chosen point at the border of the budget set. 
 
2B Lower and upper bounds on consumption and a uniform choice distribution. 
 
We try a uniform distribution on a budget set “box” with an upper bound budget 
line and lower bounds on the consumption of both of the goods. Lower bounds will 
reduce the set of possible choices(choice set). In addition to the upper bound budget 
line we also assume that the consumption of x and y is bounded below by 

 0 0 0 0 0 ,  y y  where  and y can be seen as a function of shiftvariables s
if one wishes (one can then use the chain rule to obtain sensitivity wrt s).
x x x x≥ ≥

We name these lower levels “subsistence” levels, S levels for short .One early 
example on the use of lower levels is Stone-Geary preferences (Hey 2003 p 80). 
We integrate (to find expected values) over the set. 

( )2
0 0( , ) :  and x x , yx yD x y inR p x p y m y= + ≤ ≥ ≥  

The results in relation to the lower bounds are 
 

Positive in terms of 0x
0

( )( 0E x
x

∂
>

∂
) . 

In words: A higher S – level of x will increase the consumption of  x  on average. 
In other words: shift variables that increases the S-level will increase the consumption 
of x  on average. 

Negative in terms of 0y (
0

( )E x
y

∂
∂

<0) 

In words: A higher S – level of y will decrease the consumption of x on average. 
In other words: shift variables that increases the S-level of y will decrease the 
consumption of x on average. Drug addicts will decrease their consumption of other 
goods when their S-level increases. 
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Similar result are found for E(y) 
The calculations are found in section A 5.  
The results in relation to the budget line upper bounds are given in 2C. 
 
 
2C Specific frequency functions 
 
We next calculate the expected demand functions for some ( probability) frequency 
functions and look at their properties. We have chosen both for reasons of simplicity 
and for connections to economic textbook examples the following frequency 
functions. All the chosen functions are positive monotonous in the choice variables, 
that is we expect choice to take place in the direction of the upper constraint (in this 
case the budget constraint). If preferences of such regularity exists then this might 
be reflected in choice frequencies. 
 
i)The fixed proportions (perfect complements) frequency ( , ) min( , )f x y K x y=  
The function is symmetric and homogeneous in the variables. 
ii)Cobb-Douglas frequency 2( , )f x y Kx y=  
The choice probability increases more with x than it increases with y. 
The function is nonsymmetric , homogeneous and positive monotonous in the choice 
variables. 
iii) The quasi linear frequency function f(x,y)=K( x )y+  
The function is nonsymmetric and nonhomogeneous in the variables. 
iv)Linear density function f(x,y)=K(x+y) 
The choice probability increases linearly with x and y. 
The function is symmetric and homogeneous in the variables. 
v) Convex frequency f(x,y)=K 2( )x y+ (“concave “preferences) 
Note that this function is not quasiconcave. 
The choice probability increases more with x than with y. 
The function is nonsymmetric and nonhomogeneous. 
The constant K (normalization constant) is explained below 
  
Our idea is to  focus on the budget set D of the consumer  and to assume some 
(probability)frequency functions of choice f(x, y) defined in this set.  
The  budget set D is 
 
D={ }2

2( , ) in R :  and x 0, 0x yx y p x p x m y+ ≤ ≥ ≥  
 
For each one of the frequency functions given earlier we find the constant K by 
integrating the functions over D to find the volume bounded by the function. We then 
find K by putting this volume equal to one (more details in the appendix). 
We then integrate once more to find the expected consumption of  good x , E(x) and 
the same for good y, E(y). 
After finding the expressions of E(x) and E(y) which are functions of  the prices of x 
and y and the income (budget) m  

( ) ( , , )

( ) ( , , )
x y

x y

E x f p p m

E y g p p m

=

=
 

we differentiate  to find sensitivity results. 
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Results 
 
The results for all chosen frequency functions plus the uniform distribution are  
 
i) The goods x and y are on average normal goods.  
 

( ) ( )>0 and E x E
m m

∂ ∂
∂ ∂

y  >0 

 
ii) they  are on average strictly negatively related to  its own prices 
 

 
( ) ( ) <0 and 0

x y

E x E y
p p

∂ ∂
<

∂ ∂   

iii) the cross- derivatives  
 

( ) ( )0,  0
y x

E x E y
p p

∂ ∂
≥ ≥

∂ ∂
 

.  
are on average non-negative (gross substitutes). 
An exception to iii) is the perfect complements distribution and 
the uniform distribution with positive lower bounds (x and y are complementary 
through the lower bounds). where  
 

( ) ( )0,  0
y x

E x E y
p p

∂ ∂
< <

∂ ∂
. 

 
Note that all solutions are inner solutions by construction (x>0, y>0) whereas the 
utility maximising solution in two cases generally are border solutions (either x=0,or 
y=0) and that the results are valid for the non-quasiconcave frequency function. 
 
They are homogeneous of degree zero in prices and budget 
 

( ( , , )) ( ( , , )) for 0

( ( , , )) ( ( , , )) for 0
x y x y

x y x y

E x p p m E x p p m

E y p p m E y p p m

λ λ λ λ

λ λ λ λ

= >

= >
 

In elasticity form the homogeneity condition give us 
0

( )where 
( )

x yExm Exp Exp

Exm

El El El

E x mEl
m E x

+ + =

∂
=

∂

 

0

( )where 
( )

x yEym Eyp Eyp

Eym

El El El

E y mEl
m E y

+ + =

∂
=

∂
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This elasticity condition is the same as in the utility maximizing case if we replace 
x with E(x.). For elasticity forms in traditional theory see (Shone 1975 p 91). 
We also found a symmetric negative definite substitution matrix for the Cobb-
Douglas frequency and the linear frequency. 
Homogeneity is valid for all frequency functions that are independent of 
monetary variables when we start. This implies f(x,y)= K g(x,y) where g(x,y) is 
independent of  monetary variables.  
Other examples we have calculated give the same results as above. 
We tried one simple example negative monotone in the choice variables 
that is we expected choice to take place in the direction of the lower constraint (in this 
case low consumption).Another simple example negative monotone in one choice 
variable and positive monotone in the other gave no different result. 
Examples with more convexity and increasing give the same result. 
So far we have not been able to prove that the results of negativity are valid for all 
frequency functions (like homogeneity is). It seems reasonable (my calculations hint 
to) that a large class of frequency functions positive monotonous in the choice 
variables will give negativity. A mathematician might help here in the future. 
There is no reason to believe that the result is valid for more complex frequency 
functions. 
 
Comments on the examples given in the appendix 
We note that for simple expressions of the frequency functions such as the perfect 
complements, the Cobb-Douglas or the linear we get average expenditure independent 
of prices whereas the more complex expressions of convex and quasilinear do not 
have this property. 
In the numerical calculations we find a regular pattern. 
The own price elasticities goes from inelastic to more and more  
elastic (from uniform and perfect complements to convex)..The average expenditure 
range from 0,75m up to 0,93m. The latter number comes from the uniform 
distribution (the average expenditure is relative close to m due to the tight lower 
bounds). Identify lower bounds and the preferences and choices inside the “box” 
matter less.  
The uniform frequency function expected demand also has a symmetric  
substitution matrix which is negative definite for the case where the lower 
bounds are zero. 
The substitution matrix is not symmetric if the lower bounds are not zero but the 
diagonal is negative. This example shows that some results of traditional theory 
with x replaced by E(x) is not valid for all frequency functions.  
 
Aggregation 
 
If two households meet the same prices the expected aggregate demand for good x 
 

, 1 2 1 , 1 2 , 2( , , ) ( , ) ( , )x y x y x yEX p p m m Ex p p m Ex p p m= +  

is homogeneous of degree zero in prices and money and strictly negative in the price 
of x for the chosen frequency functions.  Any two households may have different 
frequency functions among the set we have chosen. 
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Appendix  
Contents 
A1 Calculation of expected demand functions and their properties. 
A2 Homogeneity of degree zero a general property. 
A 3 Formulas and numerical values for the chosen frequency functions. 
The perfect complements frequency function.  
The Cobb-Douglas frequency function. 
The quasi linear frequency function.  
The linear frequency function.  
The convex frequency function.  
A4 The convex frequency function f(x,y)=K 2( )x y+ calculations. 
A5 Upper and lower bounds on the consumption of both goods and a uniform 
distribution. Calculation of  expected demand, sensitivity results and numerical 
values. 
 
 
A1 Calculation of expected demand functions and their properties. 
 
For each frequency function f(x, y) we first integrate over the budget set  
D={ }2

2( , ) in R :  and x 0, 0x yx y p x p x m y+ ≤ ≥ ≥  

 to find the constant K. ( ( , )
D

Kf x y dxdy 1)=∫∫  

 
To make the calculations somewhat simpler we do some change of variables. 

( )
x y

m mWe put x=u  and y=v  to integrate over the set
p p

D = (u,v) R : u 0, v 0,u+v 1′ ∈ ≥ ≥ ≤
 

We then have 
´

2

( , ) ( ( ), ( ))
x y D

mf x y dxdy f x u y v dudv
p p

=∫∫ ∫∫  

where the Jacobian of the transformation is taken outside the integral on the right side. 
For change of variable formulas see Buck (1956) p 244. 
 
A2 Homogeneity of degree zero a general property 
 
The change of variables where 

x y

m mwe put x=u  and y=v  
p p

 

shows how the transformation connecting ( x, y ) space and (u, v) space is 
homogeneous in degree zero in prices and budget. . We assume f(x, y) = K g(x, y) 
where g(x,y) is independent of monetary variables and the monetary dependence 
enters through the normalization constant K. 

We then have 
´

2

( , ) ( ( ), ( ))
x y D

mf x y dxdy f x u y v dudv
p p

=∫∫ ∫∫  
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homogeneous of degree zero and  x f(x, y) as well. 
 
After integrating and finding K we do two more integrations to find E(x) and E(y) 
using the same change of variables. 
After finding them we differentiate them to find sensitivity results.  
Since the derivations are laborious but follow the same pattern we illustrate by taking 
the example of convex frequency function f(x, y) = K 2( )x y+ in section A 4.  
 
 
 
A 3 More on the chosen frequency functions and numerical values 
The general results are given earlier in section 2C. 
Here we mainly give more details such as the explicit expressions of frequency 
functions, of the expected demands and of average expenditure. 
We also calculate numerical values for one income price combination. 
For the same income price combination we find the utility maximising solution. 

 
The fixed proportions (perfect complements) frequency function. 
 

f(x, y)=K min(x, y)= 2 2

2 2

min( , ) 

6( )

x y

x y

x y
m m
p p
m m
p p

+

 

E(x) = (1 )
4 ( )

yx

x y

mm
pp

m m
p p

+
+

 

 

E(y) = (1 )
4 ( )

y x

x y

m m
p p

m m
p p

+
+

 

The average expenditure 
3( )
4x y
mE p x p y+ =  

which is price independent. 
 
Numerical values. 
 
For the numerical values m=100, 10, 5x yp p= =  we find 
 
E(x) = 4,166. E(y) = 6,666.The utility maximising solution x=y=6,666. 
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xExp
( )The own price elasticity El 0,867

( )
x

x

E x p
p E x

∂
= = −
∂

 

 
 
The Cobb-Douglas frequency function. 
 

2
2

2 3

2

x

The Cobb-Douglas freqency function 
xKx

60

( )
2

( )
3

The average expenditure is
5E(p )
6

x y x y

x

y

y

yy
m m

p p p p

mE x
p
mE y
p

mx p y m

=

=

=

+ = <

 

For the Cobb-Douglas frequency function we find that the expected demand has a 
symmetric substitution matrix which is negative definite. 
 

x y

x y

Ex Ex
p p Ex Ex Ey
Ey Ey Ey m m
p p

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ⎡ ⎤ ∂ ∂⎡ ⎤⎢ ⎥ + ⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦
⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

 

Using a Cobb-Douglas frequency leads to simple calculations and can be used with 
higher exponents to get closer to the deterministic budgetline. 
Example 

3 2( , )f x y Kx y=  
implies average expenditure  

7 5( )
8 6x y
m mE p x p y+ = >  

 
Numerical values. 

x

x y

Exp

The numerical values for m=100, p 10 and p 5 are

2E(x)=5, E(y)=6
3

2 2The utility maximising solution is x=6 ,  y=6 .
3 3

The own price elasticity El 1

= =

= −

 

The average expenditure =0,83m 



 13

 
 
 
 
 
 
 
 
 
The quasilinear frequency function.  

2

x

y

xK( x )=
1 4( )
3 5

m 4 1( )
p 35 24

E(x)=
1 4 1( )
3 5 2

m 8 1( )
p 35 4

E(y)=
4 1( )
5 2

x y x y

x y

x y

x y

x y

yy
m m m

p p p p

m m
p p
m m
p p

m m
p p

m m
p p

+
+

+

+

+

+

+

1
2

 

The average expenditure  
 

5 3( )
7 8

( )
4 1( )
5 2

x y
x y

x y

m mm
p p

E p x p y
m m
p p

+
+ =

+
 

Numerical values. 
 

x

x y

Exp

The numerical values for m=100. p 10,  p 5 are
E(x)=2,86 E(y)=9,13
The utility maximizing solution is 
x=0,06, y=19.88
The own price elasticity El 1.05

= =

= −

 

The average expenditure =0,77m 
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The linear frequency function. 
  

2

The linear frequency function

K( )=
( )

6

( ) (2
2

( )
2( ) 4( )

( ) ( 2
2

( )
2( ) 4( )

x y x y

x x y x x y

x y x y

y x y y x y

x y x y

x yx y
m m m
p p p p

m m m m m m )

)

p p p p p p
E x m m m m

p p p p

m m m m m m
p p p p p p

E y m m m m
p p p p

+
+

+

+ +
= =

+ +

+ +
= =

+ +

 

 

The average expenditure  3( ) 0,
4x y
m 75E p x p y m+ = =  

The substitution matrix is symmetric and negative definite.  
 
Numerical values. 

x

x

Exp

1 1For m=100, p 10, 5 we have E(x)=3 , ( ) 8 .
3 3

The utility maximising solution is x=0, y=20 for comparison.
The own price elasticity El 1,16

yp E y= = =

= −
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The convex frequency function.  

2

2

2

2

2

2

2

2

2

2

x

 The expected demand for good x
3m( )
5 2

E(x)=
 ( 2)

We also give the expected demand for good y
1m( )
5

E(y)=
 ( 2)

Calculating the average expenditure
4(
5

E(p )

x y

x
x y

x y

y
x y

x
y

m m
p p
m mp
p p

m m
p p
m mp
p p

m mm
p

x p y

+

+

+

+

+
+ = 2

2

3)
2

( 2)

y

x y

p
m m
p p

+  

 
Numerical values. 
 
The numerical values for the income price combination 
 

x

x y

Exp

100,  p 10,  p 5 are

5E(x)=5,  E(y)=5
7

The utility maximising solution is x=10,y=0.
( )The own price elasticity El 1,285

( )
x

x

m

E x p
p E x

= = =

∂
= = −
∂

 

Average expenditure = 0, 78 m 
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A4 The convex frequency function f(x, y) = K 2( )x y+ calculations. 
 
 
Step 1 Finding the constant K 
We integrate  

´

2 2
2 2

2( ) ( )
x y x yD D

m m mK x y K u v dudv
p p p p

+ = +∫∫ ∫∫  

 
using the variable transformation above. 
 

´

2 2
2 2

2( ) ( )
x y x yD D

m m mK x y dxdy K u v dudv
p p p p

+ = +∫∫ ∫∫  

 
1 12 2 2 2 21 2 1-u 2

02 20
0 0

12 2 2
2

2
0

12 2
2 3 2

2
0

2 2 3 4 3 2
1 2
0 2

( )  I ( )
2

(1 ) ( (1 ) )
2

 ( ( ) (1 2 )
2

2 ( ( ) ( )
3 4 2 3 2

u

x y x y x y x y

x y x y

x y x y

x y x y x

Km m m Km m m vdu u v dv du u v
p p p p p p p p

Km m m udu u u
p p p p

Km m mdu u u u u
p p p p

Km m u u m u KmI u u
p p p p p p

−
+ = + =

−
− + =

− + + − =

− + + − =

∫ ∫ ∫

∫

∫
2

2

2 2 2 2

2 2

2 2

2

2
2

2 2

2

1 1 1( ( ) (1 1)
3 4 2 3

1 1 ( )  ( ) 1
12 6 6 2

1which will give us K=
1 ( )

6 2

xand the density function K(x )=
1 ( )

6 2

y x y

x y x y x y x y

x y x y

x y x y

m m
p p

Km m m Km m m
p p p p p p p p

m m m
p p p p

yy
m m m
p p p p

− + + −

+ = + =

+

+
+

+

=
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Step 2 Finding  E(x) 
 

12 2 3 212 2
2 2 20

´ 0

13 2 2
1-u 3
02 2

0

13 2
3 4 3 2

2 2
0

3 2 4 5
1
02 2

( ) ( ) ( ) ( )

 I ( )
2

 ( ( ) ( 2 )
2

 ( ( )
4 5

u

x y x x y x y x yD D

x y x y

x y x y

x y x

Km m m m Km m m3x K x x y dxdy u u v dudv du u uv dv
p p p p p p p p p

Km m m vdu u v
p p p p

Km m mdu u u u u u
p p p p

Km m u u mI
p p p

−
= + = + = + =

+ =

− + + − =

− +

∫∫ ∫∫ ∫ ∫

∫

∫

E

2 4 3 2
3

2 2

3 2

2 2

2

2

2

2

2 1 1 1 1 2( )  ( ( ) ( ))
2 2 4 3 4 5 2 2 4 3

1 ( )
4 5 6

fter inserting K and simplifying we obtain the expected demand for good x
3m( )
5 2

E(x)=
 ( 2)

 also gi

y x y x y

x y x y

x y

x
x y

u u Km m mu
p p p p p

Km m m
p p p p

m m
p p
m mp
p p

+ − = − + + − =

+

+

+

A

We
2

2

2

2

2

2

x 2

2

ve the expected demand for good y
1m( )
5

)=
 ( 2)

culating the average expenditure
4 3( )
5 2

)
( 2)

x y

y
x y

x y
y

x y

m m
p p
m mp
p p

m mm
p p

x p y
m m
p p

+

+

+
+ =

+

E(y

Cal

E(p
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A5 Upper and lower bounds on the consumption of both goods and a uniform 
distribution. Calculation of expected demand, sensitivity results and numerical 
values. 
 

( ) ( , )

where f(x,y)=K is the uniform density function and the integral
is taken over the budget set D

E x xf x y dxdy= ∫∫
 

2
0 0( , ) :  and x x , yx y

x y

m mD x y inR p x p y m k y l
p p

⎛ ⎞
= + ≤ ≥ = ≥⎜ ⎟⎜ ⎟
⎝ ⎠

=  

Using the variable transformation  

( ), y= (
x y

m m )x s k t l
p p

= + +  

We change the set D into the set D´ 
{ }2´ ( , ) in R :  s+t a=1-k-l and s 0,t 0D s t= ≤ ≥ ≥  

The Jacobian of the transformation is
2

x y

m
p p

 

 
Step 1 Calculation of the constant K 

´

2 2 2

0
0 0 0

2 2 2 2

0
0

2 2

( )
2 2

1which give us K=

2

a a s a
a s

x y x y x yD

a
a

x y x y x y

x y

m m mK dsdt K ds dt K dsI t
p p p p p p

m m s mK ds a s KI as K
p p p p p p

m a
p p

−
−= =

− = − = =

∫∫ ∫ ∫ ∫

∫
2

1a  

 
Step 2 Calculation of the expected value of x (E(x)) 

2 3

2 0
´ 0

3 3 2 3 2 3

02 2 2
0

( ) ( ) ( )

( )( ) (
2 3 2 6

a s
a

x y x x yD

a
a

x y x y x y

Km m KmE x s k dsdt ds s k dt
p p p p p

Km Km s s ks Km a a ks k a s ds I a aks
p p p p p p

−

= + = + =

+ − = + − − = +

∫∫ ∫ ∫

∫
3 2

)
2

 

Inserting K and simplifying we get 
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0

0

0

0

1( ) ( ) 1 23 3( ) ( )
3 3

1( ) ( ) 1 23 3( ) ( )
3 3

y
x x x

x
y y

a l km k m k
E x m

p p p
a l km l m l

p y x

E y m
py p p

− −
+ +

= = = − +

− −
+ +

= = = − +p x y

 

 
 
The average expenditure is 

0 0
1( ) (2 )
3x y x yE p x p y m p x p y m+ = + + < , 

which is price independent if 0 0 0x y= = .   
Sensitivity results. 
 
Relation between the expected value of x and change in the lower border of  x . 

We look for 
0

( )E x
x

∂
∂

 which we find to be positive .The expected demand increases 

when the lower constraint 0x  increase. 
Relation between the expected value of x and change in the lower border of  y . We 

look for 
0

( )E x
y

∂
∂

 which we find to be negative. The expected demand of x decreases 

when the lower constraint of good y ( 0 )y increases. 
We note here that  

( ) ( )0,  0
y x

E x E y
p p

∂ ∂
< <

∂ ∂
 

for positive lower bounds (x and y are complementary through the lower bounds) in 
contrast to the other case without lower bounds where. 

( ) ( )0,  0
y x

E x E y
p p

∂ ∂
= =

∂ ∂
 

Note that the other chosen frequency functions gave us non negative crossderivatives. 
The uniform frequency function expected demand also has a symmetric  
substitution matrix which is negative definite for the case where the lower 
bounds are zero. 
The substitution matrix is not symmetric if the lower bounds are not zero but the 
diagonal is negative. This example shows that results of traditional theory with x 
replaced by E(x) is not valid for all frequency functions. We have already noted  
that the average Engel and Cournot restrictions are not valid. 
 
 
Numerical values. 
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x yNumerical values for m=100, p 10,  p 5,  k=0,5 and l=0,3 are
2 1E(x)=5 ,  E(y)=7
3 3

= =

xExp
( )The own price elasticity El 0, 41

( )
x

x

E x p
p E x

∂
= = −
∂

 

Average expenditure 0,933m < m. 
Note the relative closeness to m due to the tight lower border. Identify lower bounds 
and the choice and/or preferences inside the “box” matter less. 
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