Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Akrap, Nina"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Delineating cellular heterogeneity and organization of breast cancer stem cells
    (2015-12-02) Akrap, Nina
    Breast cancer is characterized by a high degree of heterogeneity in terms of histological, molecular and clinical features, affecting disease progression and treatment response. The cancer stem cell (CSC) model suggests, that cancers are organized in a hierarchical fashion and driven by small subsets of CSCs, endowed with the capacity for self-renewal, differentiation, tumorigenicity, invasiveness and therapeutic resistance. The overall aim of this thesis was to characterize CSC phenotypes and the cellular organization in estrogen receptor α + (ERα+) and ERα- subtypes of breast cancer at the individual cell level. Furthermore, we aimed to identify novel functional CSC markers in a subtype-independent manner, allowing for better identification and targeting of breast-specific CSCs. At present, single-cell quantitative reverse transcription polymerase chain reaction represents the most commonly applied method to study transcript levels in individual cells. Inherent to most single-cell techniques is the difficulty to analyze minute amounts of starting material, which most often requires a preamplification step to multiply transcript copy numbers in a quantitative manner. In Paper I we have evaluated effects of variations of relevant parameters on targeted cDNA preamplification for single-cell applications, improving reaction sensitivity and specificity, pivotal prerequisites for accurate and reproducible transcript quantification. In Paper II we have applied single-cell gene expression profiling in combination with three functional strategies for CSC enrichment and identified distinct CSC/progenitor clusters in ERα+ breast cancer. ERα+ tumors display a hierarchical organization as well as different modes of cell transitions. In contrast, ERα- breast cancer show less prominent clustering but share a quiescent CSC pool with ERα+ cancer. This study underlines the importance of taking CSC heterogeneity into account for successful treatment design. In Paper III we have used a non-biased genome-wide screening approach to identify transcriptional networks specific to CSCs in ERα+ and ERα- subtypes. CSC-enriched models revealed a hyperactivation of the mevalonate metabolic pathway. When detailing the mevalonate pathway, we identified the mevalonate precursor enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) as a specific marker of CSC-enrichment in ERα+ and ERα- subtypes, highlighting HMGCS1 as a potential gatekeeper for dysregulated mevalonate metabolism important for CSC-features. Pharmacological inhibition of HMGCS1 could therefore be a novel treatment approach for breast cancer patients targeting CSCs.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback