• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Doctoral Theses / Doktorsavhandlingar
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
  • View Item
  •   Home
  • Doctoral Theses / Doktorsavhandlingar
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The renin-angiotensin system in renal tubulogenesis. Experimental studies in the rat

Abstract
The kidney and the renin-angiotensin system (RAS) are vital regulators of blood pressure and salt-water balance. In order to appropriately regulate circulatory homeostasis, the kidney must undergo normal development, in which the RAS plays a crucial role. The main effector peptide of the RAS is angiotensin II (ANG II), which governs mammalian nephrogenesis predominantly through stimulation of ANG II type 1 (AT1) receptors. Perinatal lack of AT1 receptor stimulation leads to long-term renal damage that is characterized by tubulointerstitial inflammation/fibrosis, papillary atrophy and renal vascular changes. Irreversible morphologic abnormalities are associated with a pronounced disability in urine concentration. The inadvertent use of angiotensin-converting enzyme (ACE) inhibitors or AT1 receptor blockers in pregnant women causes neonatal oliguria and renal tubular dysplasia. These findings highlight the pivotal role of the RAS in human nephrogenesis. Generally, the present study attempted to construct the sequence of early morphologic-mechanistic events in the developing kidney of the rat subjected to neonatal pharmacologic blockade of the RAS, focusing on the role of the RAS in tubulogenesis. Specifically, this study: 1) determined the time course of tubular structural and inflammatory changes in the developing renal medulla; 2) identified genes involved in the RAS-mediated developmental process of the renal medulla; 3) characterized developmental defects of the thick ascending limb of Henle (TALH); and 4) characterized developmental defects of the tubules at a subcellular level. The following methods were employed in the present study: light and electron microscopy; stereological analysis; DNA microarrays, Western blotting and immunohistochemistry; flow cytometry and spectrophotometric analysis. The present study demonstrated that pharmacologic interruption of AT1 receptor signaling in the newborn rat induces irreversible medullary tubular changes, firstly, and triggers an inflammatory response, secondly. Perturbed tubulogenesis is associated with, and may partly result from, alterations in the assembly of extracellular matrix and nephrovascular development. Neonatal lack of ANG II stimulation causes phenotypic changes in the developing TALH. Developmental defects in the TALH provide an explanatory support for the reduced sodium reabsorption and disability to concentrate urine in adult rats subjected to neonatal inhibition of the RAS. Furthermore, early structural and functional changes in the mitochondria of the developing tubular cells devoid of ANG II stimulation provide the propensity for the tubular developmental defect. Altogether, this thesis presents an advanced pathogenetic insight into the RAS-mediated renal tubulogenesis in the rat.
University
Göteborgs universitet/University of Gothenburg
Institution
Department of Physiology
Avdelningen för fysiologi
Disputation
Sal Inge Schiöler (F1405), Medicinaregatan 11, Göteborg, kl. 09.00
Date of defence
2004-04-22
URI
http://hdl.handle.net/2077/16157
Collections
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Date
2004
Author
Lasaitiene, Daina 1970-
Keywords
angiotensin II
extracellular matrix
inflammation
mitochondrial biogenesis
renal development
renin-angiotensin system
thick ascending limb of Henle
tubulogenesis
Publication type
Doctoral thesis
ISBN
91-628-6039-9
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV