Show simple item record

dc.contributor.authorAndrén, Thomas
dc.contributor.authorAndrén, Daniela
dc.date.accessioned2009-02-03T12:40:34Z
dc.date.available2009-02-03T12:40:34Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/2077/19348
dc.description.abstractMatching estimators use observed variables to adjust for differences between groups to eliminate sample selection bias. When minimum relevant information is not available, matching estimates are biased. If access to data on usually unobserved factors that determine the selection process is unavailable, other estimators should be used. This study advocates the one-factor control function estimator that allows for unobserved heterogeneity with factor-loading technique. Treatment effects of vocational training in Sweden are estimated with mean and distributional parameters, and then compared with matching estimates. The results indicate that unobservables slightly increase the treatment effect for those treated.en
dc.language.isoengen
dc.publisherRoutledge, Taylor & Francisen
dc.relation.isversionofhttp://dx.doi.org/10.1080/00036840500427577en
dc.subjectvocational trainingen
dc.subjectsortingen
dc.subjectunobserved heterogeneityen
dc.subjectone-factor modelen
dc.subjectmatching estimatoren
dc.titleAssessing the employment effects of vocational training using a one-factor modelen
dc.type.sveparticle, peer reviewed scientificen
dc.gup.originGöteborg University. School of Business, Economics and Lawen
dc.gup.departmentDepartment of Economicsen
dc.citation.issn1466-4283en
dc.citation.epage2486en
dc.citation.issue21en
dc.citation.jtitleApplied Economicsen
dc.citation.spage2469en
dc.citation.volume38en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record