Measurement and Analysis of the Direct Connect Peer-to-Peer File Sharing Network
Abstract
Online social networks and peer-to-peer file sharing networks create a digital
mirror of human society, providing insights in social dynamics such as interaction
between entities, structural patterns and flow of information. In the
past such studies were inherently limited due to the vast supply of information.
Today these phenomena can be studied at large scale using computers
to process data from this digital mirror.
Findings from such networks have shown interesting structural properties
shared by both types of systems. In particular, it is often the case that they
show to be scale-free and small-world networks.
By letting ideas and findings from studied peer-to-peer networks guide
the design of novel architectures, improvements on user integrity, usability
and performance have been observed.
This thesis presents a study of the Direct Connect peer-to-peer file sharing
network. We model abstract tools and methods for measuring the network
architecture, and, moreover, custom software tools for data gathering
and analysis from Direct Connect networks are developed, presented and
discussed.
We look at network topology and properties, statistics on user activities
and geographic distribution, characterization/statistics on data shared and
correlations of users and their shared data.
We verify the scale-free property, small-world network model, strong data
redundancy with clusters of common interest in the set of shared content,
high degree of asymmetry of connections and more.
Finally, we discuss the implications of our findings and comparison with
results from similar research is done.
Degree
Student essay
Collections
View/ Open
Date
2010-03-08Author
Molin, Karl
Series/Report no.
2009
57
Language
eng