Visa enkel post

dc.contributor.authorAsplund, Maria E.
dc.date.accessioned2013-02-04T09:53:36Z
dc.date.available2013-02-04T09:53:36Z
dc.date.issued2013-02-04
dc.identifier.isbn91-89677-52-8
dc.identifier.urihttp://hdl.handle.net/2077/31813
dc.description.abstractHeterotrophic bacteria of the genus Vibrio are indigenous in the marine environment although environmental cues regulate their growth and distribution. The attention brought to this genus is due to its many species/strains that are pathogenic to humans and other organisms. Vibrio abundances are strongly coupled to water temperature and salinity but abundance dynamics occur even where these hydrographical parameters are stable. In this thesis, I have studied Vibrio dynamics in relation to other organisms such as phytoplankton (papers I, II and III) and a bivalve host-organism (paper IV) in a changing environment where increasing temperature (paper III) and ocean acidification (paper IV) may influence survival and proliferation of these bacteria. In particular paper I showed that in a tropical coastal area, where the water temperature and salinity were stable across seasons, abundances of Vibrio were tightly coupled to phytoplankton biomass and community composition. A diatom bloom during December seemed to support high numbers of vibrios in waters with otherwise low levels of dissolved organic carbon. Paper II further supports that some phytoplankton can favor Vibrio growth while others seem to have a negative influence on Vibrio abundances. For instance, Skeletonema tropicum, a common diatom in Indian coastal waters, easily eradicated Vibrio parahaemolyticus from sea water in our experiments. In temperate marine areas culturable Vibrio predominantly occurs in the water column during the warmer months. Sediments are suggested to be potential reservoirs when conditions in the water-column are harsh. Accordingly, in paper III we showed that cold-water sediments from geographically separate areas in a boreal region of Scandinavia all contained relative high abundances of total Vibrio spp. and that all sediments also included culturable Vibrio. In agreement with paper I, the fresh input of organic material from phytoplankton blooms, for which chlorophyll a was used as a proxy, seemed to positively influence Vibrio abundances also in the sediments (paper III). Therefore, the pelagic-benthic coupling which can supply the sediments with biomass from the primary production could influence the abundance of Vibrio spp. Increasing temperature had variable influence on sediment-associated Vibrio abundance, with a significant increase in abundances in sediments originating from one area when the temperature reached over 21°C and a generally negative influence of increasing temperature on abundances in sediments originating from another area (paper III). This suggests that the sediments contained different Vibrio communities with varying temperature tolerance traits. Rising levels of carbon dioxide in the atmosphere does not only lead to higher water temperature through the green house effect, but also to acidification of the oceans. Paper IV illustrated how a common bivalve pathogen, Vibrio tubiashii, can be favored in the interaction with a calcifying bivalve host, Mytilus edulis, when this host-pathogen combination was exposed to levels of ocean acidification projected to occur by the end of the 21st century. Thus, global environmental changes may enhance the probability of Vibrio infections in higher organisms.sv
dc.language.isoengsv
dc.relation.haspartAsplund ME, Rehnstam-Holm A-S, Atnur V, Raghunath P, Saravanan V, Härnström K, Collin B, Karunasagar I, Godhe A (2011) Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environmental Microbiology 13:2738–2751.::doi::10.1111/j.1462-2920.2011.02545.xsv
dc.relation.haspartOlofsson M, Asplund ME, Karunasagar I, Godhe A. Prorocentrum micans promote and Skeletonema tropicum disfavours persistence of the pathogenic bacteria Vibrio parahaemolyticus (accepted for publication in Indian Journal of Marine Sciences)sv
dc.relation.haspartAsplund ME, Engström P, Granberg M, Norling K, Hernroth B. Are sediments reservoirs for viable Vibrio bacteria in cold water marine environments?sv
dc.relation.haspartAsplund ME, Baden S, Russ S, Ellis RP Gong N, Hernroth B. Ocean acidification and host-parasite interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashiisv
dc.subjectVibrio spp.sv
dc.subjectPhytoplanktonsv
dc.subjectOrganic materialsv
dc.subjectSedimentssv
dc.subjectIncreasing temperaturesv
dc.subjectOcean acidificationsv
dc.subjectBivalvessv
dc.subjectHost-pathogen interactionssv
dc.titleEcological aspects of marine Vibrio bacteria - Exploring relationships to other organisms and a changing environmentsv
dc.typeTextswe
dc.type.svepDoctoral thesiseng
dc.gup.mailmaria.asplund@bioenv.gu.sesv
dc.type.degreeDoctor of Philosophysv
dc.gup.originUniversity of Gothenburg. Faculty of Sciencesv
dc.gup.departmentDepartment of Biological and Environmental Sciences ; Institutionen för biologi och miljövetenskapsv
dc.gup.defenceplaceFredagen den 22 februari 2013, kl. 10.30, Hörsalen Sven Lovén Center för marina vetenskaper-Kristineberg, Kristineberg, Fiskebäckskilsv
dc.gup.defencedate2013-02-22
dc.gup.dissdb-fakultetMNF


Filer under denna titel

Thumbnail
Thumbnail

Dokumentet tillhör följande samling(ar)

Visa enkel post