Show simple item record

dc.contributor.authorStrand, Hugo U. R.
dc.date.accessioned2013-03-12T09:49:09Z
dc.date.available2013-03-12T09:49:09Z
dc.date.issued2013-03-12
dc.identifier.isbn978-91-628-8643-1
dc.identifier.urihttp://hdl.handle.net/2077/32118
dc.description.abstractThis thesis encompass a series of studies on methods and models for electron systems with local interactions, relevant for correlated materials. The first study focus on the canonical model for local correlation, the Hubbard model. Using dynamical mean field theory, the critical properties of the finite temperature end point of the metal insulator transition are determined. The issue of computing real frequency spectral functions is also addressed through the development of the novel method, distributional exact diagonalization. Next topic is the multiband Gutzwiller variational method, for which an efficient solver is presented, applicable to realistic d-electron models when accounting for lattice symmetries. The solver is applied to the iron based superconductors FeSe and FeTe, where the Hund’s coupling is found to drive orbital differentiation in the correlated parent state. A central issue is how to model the local Coulomb interaction. Imposing rotational invariance on the complete set of d-states results in the Slater-Condon interaction, to be compared with the simpler Kanamori interaction, that is shown to be a Laporte-Platt degenerate point of the former. The derivation of a minimalistic form for the Kanamori interaction in terms of density-density, total spin, and total quasi-spin operators enables an exact parametrization of the Slater-Condon interaction in terms of the Kanamori parameters. The additional interactions contained in the Slater-Condon form are identified as higher order multipole scattering, and the parametrization enables a direct study of the effect of these interaction processes. The multipole scattering is found to drive charge disproportionation and valence-skipping for a subset of multipole active d-band fillings, and raises the question whether such multipole effects are manifested in real materials.sv
dc.language.isoengsv
dc.relation.haspartI. Hugo U. R. Strand, Andro Sabashvili, Mats Granath, Bo Hellsing, and Stellan Östlund, The Dynamical Mean Field Theory phase space extension and critical properties of the finite temperature Mott transition, Phys. Rev. B 83, 205136 (2011) ::doi::10.1103/PhysRevB.83.205136sv
dc.relation.haspartII. Mats Granath and Hugo U. R. Strand, Distributional exact diagonalization formalism for quantum impurity models, Phys. Rev. B 86, 115111 (2012) ::doi::10.1103/PhysRevB.86.115111sv
dc.relation.haspartIII. Nicola Lanata, Hugo U. R. Strand, Xi Dai, and Bo Hellsing, Efficient implementation of the Gutzwiller variational method, Phys. Rev. B 85, 035133 (2012) ::doi:: 10.1103/PhysRevB.85.035133sv
dc.relation.haspartIV. Nicola Lanata, Hugo U. R. Strand, Gianluca Giovannetti, Bo Hellsing, Luca de’ Medici, and Massimo Capone, Orbital Selectivity in Hund’s metals: The Iron Chalcogenides, Phys. Rev. B 87, 045122 (2013) ::doi:: 10.1103/PhysRevB.87.045122sv
dc.relation.haspartV. Hugo U. R. Strand, Nicola Lanata, Mats Granath, and Bo Hellsing, Local correlation in the d-band, Slater-Condon vs. Kanamori, (in manuscript)sv
dc.relation.haspartVI. Hugo U. R. Strand, Valence skipping and effective negative-U in the d-band from repulsive local Coulomb interaction, (in manuscript)sv
dc.titleCorrelated Materials - Models & Methodssv
dc.typeText
dc.type.svepDoctoral thesiseng
dc.gup.mailhugo.strand@physics.gu.sesv
dc.type.degreeDoctor of Philosophysv
dc.gup.originUniversity of Gothenburgsv
dc.gup.departmentDepartment of Physics ; Institutionen för fysiksv
dc.gup.defenceplaceFredagen den 12:e april 2013, kl. 10.00, i salen Pascal, Chalmers Tvärgata 3, Chalmers, Göteborgsv
dc.gup.defencedate2013-04-12
dc.gup.dissdb-fakultetMNF


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record