• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Kandidatuppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Kandidatuppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic classification of UML Class diagrams through image feature extraction and machine learning

Abstract
Unified Modeling Language (UML) Class diagrams (CD) are a large part of the software development industry in relation to design. To be able to research UML, academia needs to have access to a database of UML diagrams. For building such a database, automatic classification of UML diagrams would be very beneficial. This research is of a design nature, and focuses on investigating CD classification: what features set them apart from other similar diagrams; how these features can be extracted through image processing; and what kind of accuracy is achievable with said features, using the Support vector machine (SVM) algorithm, and comparing it to several different machine learners (ML). The extracted features that this paper proposes for classification -- in conjunction with the chosen ML -- returns, on average, over ninety percent accuracy in classifying UML Class diagrams.
Degree
Student essay
URI
http://hdl.handle.net/2077/38587
Collections
  • Kandidatuppsatser
View/Open
Bachelor Thesis (1.621Mb)
Date
2015-03-30
Author
Hjaltason, Jóel
Samúelsson, Ingimar
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV