Show simple item record

dc.contributor.authorAravena, Claudia
dc.contributor.authorHutchinson, W. George
dc.contributor.authorCarlsson, Fredrik
dc.contributor.authorMatthews, David I.
dc.date.accessioned2015-04-13T08:03:08Z
dc.date.available2015-04-13T08:03:08Z
dc.date.issued2015-04
dc.identifier.issn1403-2465
dc.identifier.urihttp://hdl.handle.net/2077/38652
dc.descriptionJEL: D03, Q40, Q51sv
dc.description.abstractPolicymakers have largely replaced Single Bounded Discrete Choice (SBDC) valuation by the more statistically efficient repetitive methods; Double Bounded Discrete Choice (DBDC) and Discrete Choice Experiments (DCE). Repetitive valuation permits classification into rational preferences: (i) a-priori well-formed; (ii) consistent non-arbitrary values “discovered” through repetition and experience; (Plott, 1996; List 2003) and irrational preferences; (iii) consistent but arbitrary values as “shaped” by preceding bid level (Tufano, 2010; Ariely et al., 2003) and (iv) inconsistent and arbitrary values. Policy valuations should demonstrate behaviorally rational preferences. We outline novel methods for testing this in DBDC applied to renewable energy premiums in Chile.sv
dc.format.extent44sv
dc.language.isoengsv
dc.relation.ispartofseriesWorking Papers in Economicssv
dc.relation.ispartofseries619sv
dc.subjectContingent valuationsv
dc.subjectdouble bounded discrete choicesv
dc.subjectrepetitive learningsv
dc.subjectadvanced information learningsv
dc.subjectbid dependencysv
dc.subjecttheories of preference formationsv
dc.titleTesting preference formation in learning design contingent valuation (LDCV) using advanced information and repetitive treatmentssv
dc.typeTextsv
dc.type.svepreportsv
dc.contributor.organizationDept. of Economics, University of Gothenburgsv


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record