Visa enkel post

dc.contributor.authorWerner, Erik
dc.date.accessioned2015-09-24T12:03:29Z
dc.date.available2015-09-24T12:03:29Z
dc.date.issued2015-09-24
dc.identifier.isbn978-91-628-9555-6
dc.identifier.isbn978-91-628-9556-3
dc.identifier.urihttp://hdl.handle.net/2077/40087
dc.description.abstractThis thesis is devoted to the study of DNA molecules in nanochannels. In the last ten years, a large number of studies have been conducted wherein DNA molecules were confined to channels with a width of about 100 nm. These studies are motivated both by biotechnical applications, and by the potential for using nanochannels as a model system for studying the physics of confined DNA. The results of this thesis increase our understanding of the equilibrium statistics of such channel-confined DNA. The results can be divided into three parts. In the first, we derive novel predictions for the extension statistics of channel-confined polymers. Specifically, we map out a phase diagram of scaling regimes for a polymer in a rectangular channel. Further, in an important special case known as the extended de Gennes regime, we show that the configurational statistics are equivalent to those of a one-dimensional model known as the weakly self-avoiding random walk. Exact results for that model yield rigorous predictions for the confined polymer. In the second part we report experimental measurements of the extension statistics of confined DNA. We find that the measurements agree very well with theoretical predictions, except at low ionic strengths. Finally, the third part of the thesis concerns the melting of DNA, i.e. the partial disassociation of its two strands at elevated temperatures. We solve a simple model of DNA melting and show that, within this model, channel confinement makes the transition to the molten state less abrupt, despite the fact that the order of the phase transition is unchanged by confinement.sv
dc.language.isoengsv
dc.relation.haspartE. Werner and B. Mehlig. Scaling regimes of a semiflexible polymer in a rectangular channel. Physical Review E 91 (5) (2015). ::doi::10.1103/PhysRevE.91.050601sv
dc.relation.haspartE. Werner and B. Mehlig. Confined polymers in the extended de Gennes regime. Physical Review E 90 (6) (2014), p. 062602. ::doi::10.1103/PhysRevE.90.062602sv
dc.relation.haspartM. Alizadehheidari, E. Werner, C. Noble, M. Reiter-Schad, L. K. Nyberg, J. Fritzsche, B. Mehlig, J. O. Tegenfeldt, T. Ambjörnsson, F. Persson, and F. Westerlund. Nanoconfined Circular and Linear DNA: Equilibrium Conformations and Unfolding Kinetics. Macromolecules 48 (3) (2015), pp. 871–878. ::doi::10.1021/ma5022067sv
dc.relation.haspartV. Iarko, E. Werner, L. K. Nyberg, V. Müller, J. Fritzsche, T. Ambjörnsson, J. P. Beech, J. O. Tegenfeldt, K. Mehlig, F. Westerlund, and B. Mehlig. Extension of nano-confined DNA: quantitative comparison between experiment and theory. arXiv:1506.02241 (2015)sv
dc.relation.haspartE. Werner, M. Reiter-Schad, T. Ambjörnsson, and B. Mehlig. Model for melting of confined DNA. Physical Review E 91 (6) (2015), p. 060702. ::doi::10.1103/PhysRevE.91.060702sv
dc.subjectDNA physicssv
dc.subjectPolymer physicssv
dc.titleEquilibrium statistics of channel-confined DNAsv
dc.typeText
dc.type.svepDoctoral thesiseng
dc.gup.mailerik.werner@physics.gu.sesv
dc.type.degreeDoctor of Philosophysv
dc.gup.originGöteborgs universitet. Naturvetenskapliga fakultetensv
dc.gup.departmentDepartment of Physics ; Institutionen för fysiksv
dc.gup.defenceplaceFredagen den 16 oktober 2015, kl. 10.00, PJ-salen, Origo Norra, Fysikgården 2sv
dc.gup.defencedate2015-10-16
dc.gup.dissdb-fakultetMNF


Filer under denna titel

Thumbnail
Thumbnail
Thumbnail

Dokumentet tillhör följande samling(ar)

Visa enkel post