• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Physics / Institutionen för fysik
  • Licentiatavhandlingar / Institutionen för fysik
  • View Item
  •   Home
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Physics / Institutionen för fysik
  • Licentiatavhandlingar / Institutionen för fysik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Far-infrared conformer-specific signatures of small aromatic molecules of biological importance

Abstract
Our understanding of many biological processes requires knowledge about biomolecular structure and weak intra- and intermolecular interactions (e.g. hydrogen bonding). Both molecular structure and weak interactions can be directly studied by far-infrared (or THz) spectroscopy, which probes low-frequency molecular vibrations. In this thesis I present the results of experimental and theoretical investigations of far-infrared vibrations in small aromatic molecules of biological relevance. To enable a direct comparison with theory, far-infrared spectroscopy was performed in the gas phase with a conformer-selective IR-UV ion-dip technique. The far-infrared spectra of molecules containing a peptide (-CO-NH-) link revealed that the low-frequency Amide IV-VI vibrations are highly sensitive to the structure of the peptide moiety, the molecular backbone, and the neighboring intra- and intermolecular hydrogen bonds. The study of far-infrared spectra of phenol derivatives identified vibrations that allow direct probing of strength of hydrogen-bonding interaction, and a size of a ring closed by the hydrogen bond. Furthermore, benchmarking theory against the experimental data identified advantages and disadvantages of conventional frequency calculations for the far-infrared region performed with ab initio and density functional theory. For example, the conventional approaches were not able to reproduce strongly anharmonic vibrations such as aminoinversion in aminophenol. Instead, a double-minimum potential model was used for this vibration, and successfully described the experimental spectra of aminophenol. The results presented in this thesis can assist the interpretation of far-infrared spectra of more complex biomolecules, pushing forward low-frequency vibrational spectroscopy for efficient structural analysis and the studies of weak interactions.
University
University of Gothenburg. Faculty of Science
Institution
Institute of Physics
URI
http://hdl.handle.net/2077/47646
Collections
  • Licentiatavhandlingar / Institutionen för fysik
View/Open
gupea_2077_47646_1.pdf (5.825Mb)
Date
2016
Author
Yatsyna, Vasyl
Keywords
low-frequency vibrations hydrogen bonding
far-IR spectroscopy
second-order vibrational perturbation theory
anharmonic vibrations
Publication type
licentiate thesis
ISBN
978-91-639-1823-0
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV