Show simple item record

dc.contributor.authorJohansson, Jimmy
dc.date.accessioned2016-12-06T11:31:53Z
dc.date.available2016-12-06T11:31:53Z
dc.date.issued2016-12-06
dc.identifier.urihttp://hdl.handle.net/2077/49978
dc.description.abstractWe introduce Arveson's generalization of the Shilov boundary to the noncommutative case and give a proof based on the work of Hamana of the existence of the Shilov boundary ideal. Moreover, we describe the Shilov boundary for a noncommutative analog of the algebra of holomorphic functions on the unit polydisk Dn and for a q-analog of the algebra of holomorphic functions on the unit ball in the space of symmetric complex 2 x 2 matrices.sv
dc.titleThe noncommutative Shilov boundarysv
dc.typetext
dc.setspec.uppsokPhysicsChemistryMaths
dc.type.uppsokH2
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record