Show simple item record

dc.contributor.authorBlanck, Rasmus
dc.date.accessioned2017-05-11T07:35:30Z
dc.date.available2017-05-11T07:35:30Z
dc.date.issued2017-05-11
dc.identifier.isbn978-91-7346-917-3 (print)
dc.identifier.isbn978-91-7346-918-0 (pdf)
dc.identifier.issn0283-2380
dc.identifier.urihttp://hdl.handle.net/2077/52271
dc.description.abstractThis thesis concerns the incompleteness phenomenon of first-order arithmetic: no consistent, r.e. theory T can prove every true arithmetical sentence. The first incompleteness result is due to Gödel; classic generalisations are due to Rosser, Feferman, Mostowski, and Kripke. All these results can be proved using self-referential statements in the form of provable fixed points. Chapter 3 studies sets of fixed points; the main result is that disjoint such sets are creative. Hierarchical generalisations are considered, as well as the algebraic properties of a certain collection of bounded sets of fixed points. Chapter 4 is a systematic study of independent and flexible formulae, and variations thereof, with a focus on gauging the amount of induction needed to prove their existence. Hierarchical generalisations of classic results are given by adapting a method of Kripke’s. Chapter 5 deals with end-extensions of models of fragments of arithmetic, and their relation to flexible formulae. Chapter 6 gives Orey-Hájek-like characterisations of partial conservativity over different kinds of theories. Of particular note is a characterisation of partial conservativity over IΣ₁. Chapter 7 investigates the possibility to generalise the notion of flexibility in the spirit of Feferman’s theorem on the ‘interpretability of inconsistency’. Partial results are given by using Solovay functions to extend a recent theorem of Woodin.sv
dc.language.isoengsv
dc.relation.ispartofseriesActa Philosophica Gothoburgensiasv
dc.relation.ispartofseries30sv
dc.subjectarithmeticsv
dc.subjectincompletenesssv
dc.subjectflexibilitysv
dc.subjectindependencesv
dc.subjectnon-standard modelssv
dc.subjectpartial conservativitysv
dc.subjectinterpretabilitysv
dc.titleContributions to the Metamathematics of Arithmetic: Fixed Points, Independence, and Flexibilitysv
dc.typeText
dc.type.svepDoctoral thesiseng
dc.type.degreeDoctor of Philosophysv
dc.gup.originGöteborgs universitet. Humanistiska fakultetenswe
dc.gup.originUniversity of Gothenburg. Faculty of Artseng
dc.gup.departmentDepartment of Philosophy, Linguistics and Theory of Science ; Institutionen för filosofi, lingvistik och vetenskapsteorisv
dc.gup.price189
dc.gup.defenceplaceFredagen den 2 juni 2017, kl. 9.00, sal T302, Gamla Hovrätten, Olof Wijksgatan 6sv
dc.gup.defencedate2017-06-02
dc.gup.dissdb-fakultetHF


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record