Show simple item record

dc.contributor.authorChristopher Backström
dc.contributor.authorAdina Berg
dc.contributor.authorMarcus Forsberg
dc.contributor.authorDaniel Skorczynski
dc.contributor.authorSamuel Vrede
dc.date.accessioned2019-06-26T09:15:01Z
dc.date.available2019-06-26T09:15:01Z
dc.date.issued2019-06-26
dc.identifier.urihttp://hdl.handle.net/2077/60623
dc.description.abstractInom statistisk dataanalys är linjär regression en metod som används för att anpassa en linje till datapunkter. Metoden kan användas för att studera och dra slutsatser kring samband mellan olika faktorer, vilket exempelvis kan vara relevant inom medicinska studier för att undersöka effekten av en viss behandling. När en linjär modell anpassats till en uppsättning datapunkter används ofta parametriska statistiska test för att dra slutsatser kring samband mellan olika variabler i modellen, där t-test är en typ av test som vanligen används. Som ett alternativ till konventionella parametriska test har permutationstestet börjat användas allt mer under de senaste decennierna. I permutationstest konstrueras en referensfördelning genom permutationer under nollhypotes, istället för att utgå från en redan existerande referensfördelning som t-testet gör. Permutationstest är beräkningstunga och kräver andra antagenden än t-test, som förutsätter normalfördelade feltermer med väntevärde 0 och konstant varians. I denna rapport presenteras en del av teorin för permutationstest inklusive kravet på utbytbarhet, samt testets tillämpning inom linjär regression. Med hjälp av simuleringar studeras data med feltermer från olika fördelningar för att jämföra hur permutationstest presterar jämfört med t-testet. Datan som undersöks har feltermer med tunga svansar, skev fördelning, utstickare och icke-konstant varians. Resultaten visar att t-testet verkar vara robust för alla typer av avvikelser förutom icke-konstant varians. Permutationstest bevarar signifikansnivån för samtliga datasimuleringar och är giltigt även för icke-konstant varians. Permutationstest presterar därmed ibland bättre, men aldrig sämre, än t-test för de undersökta datatyperna.sv
dc.titlePermutationstest i linjär regressionsv
dc.typeText
dc.setspec.uppsokPhysicsChemistryMaths
dc.type.uppsokM2
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record