Show simple item record

dc.contributor.authorKarlsson, Alexander
dc.contributor.authorKlyver, Markus
dc.contributor.authorWahl, Kajsa
dc.date.accessioned2019-07-01T13:55:33Z
dc.date.available2019-07-01T13:55:33Z
dc.date.issued2019-07-01
dc.identifier.urihttp://hdl.handle.net/2077/60769
dc.description.abstractThis paper is based on Artin's conjecture concerning homogeneous polynomial equations. The conjecture is false in general but it is still true in many cases. One of our goals is to motivate why the conjecture is formulated the way it is. Moreover, we present a counterproof to the conjecture and we prove the conjecture in one specific case. We construct the p-adic numbers as the conjecture is expressed in terms of p-adic numbers and we introduce theory on finite fields, as it is needed in the motivation of the conjecture, the counterproof and in the proof of the specific case.sv
dc.language.isoswesv
dc.titleArtins förmodan: p-adiska tal, ändliga kroppar och ekvationer utan heltalslösningarsv
dc.typeText
dc.setspec.uppsokPhysicsChemistryMaths
dc.type.uppsokM2
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record