Show simple item record

dc.contributor.authorBassuday, Kirsten
dc.contributor.authorAhmed, Murtada
dc.date.accessioned2019-10-04T07:50:20Z
dc.date.available2019-10-04T07:50:20Z
dc.date.issued2019-10-04
dc.identifier.urihttp://hdl.handle.net/2077/62033
dc.description.abstractSoftware code defect prediction is important in improving code quality and the turnaround time of software products. In this thesis we investigate how to create and extract features, analyze existing work to create and realize a defect prediction technique that can be applied in an industrial setting. We conduct this investigation on version controlled source code from Git and Jira data. We identify and define metrics to be collected and build four Machine Learning (ML) models to predict if a file is clean or defective. We create a Cost Effectiveness (CE)evaluation technique to measure the performance of our ML models and achieve a score of 87% and an accuracy of 88 % on our best models.sv
dc.language.isoengsv
dc.subjectMachine Learningsv
dc.subjectData Sciencesv
dc.subjectProcess Metricssv
dc.subjectGitsv
dc.subjectDefect Predictionsv
dc.subjectRepository Miningsv
dc.subjectJirasv
dc.titleFault Prediction in Android Systems through AIsv
dc.typetext
dc.setspec.uppsokTechnology
dc.type.uppsokH2
dc.contributor.departmentGöteborgs universitet/Institutionen för data- och informationsteknikswe
dc.contributor.departmentUniversity of Gothenburg/Department of Computer Science and Engineeringeng
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record