Show simple item record

dc.contributor.authorLaurin, Erik
dc.contributor.authorEberlén, Joacim
dc.date.accessioned2019-11-18T14:59:46Z
dc.date.available2019-11-18T14:59:46Z
dc.date.issued2019-11-18
dc.identifier.urihttp://hdl.handle.net/2077/62540
dc.description.abstractThe rapid technology development has resulted in sensors able to deliver very high-quality output. The high quality calls for efficient compression algorithms to handle the vast amount of data produced. This study aims to find a compression algorithm that delivers video streams of the highest possible quality given the constraints real-time processing using the User Datagram Protocol (UDP). This paper describes the experimental approach created to find such compression algorithm. Machine learning in the form of Bayesian optimization was applied to evaluate and hence deduce the optimal encoder parameters for each encoder and resolution in scope. WebM Project’s VP9 implementation proved to be the most optimal encoder in scope for all resolutions evaluated in the experiment but the highest (QXGA - 2048x1536). For video streams in QXGA, VP9 hardware accelerated by Intel’s QuickSync was found to perform best.sv
dc.language.isoengsv
dc.subjectVideo codingsv
dc.subjectEncodingsv
dc.subjectCodecssv
dc.subjectH.264sv
dc.subjectVP9sv
dc.subjectQSVsv
dc.subjectIntel QuickSyncsv
dc.subjectReal-time encodingsv
dc.subjectSSIMsv
dc.subjectAutonomous drivingsv
dc.subjectBayesian Optimizationsv
dc.titlePerformance Analysis of Large-scale Realtime Video Stream Configurationssv
dc.typetext
dc.setspec.uppsokTechnology
dc.type.uppsokM2
dc.contributor.departmentGöteborgs universitet/Institutionen för data- och informationsteknikswe
dc.contributor.departmentUniversity of Gothenburg/Department of Computer Science and Engineeringeng
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record