Show simple item record

dc.contributor.authorCindroi, Maria-Bianca
dc.contributor.authorIheanacho Mgbah, Robinson
dc.date.accessioned2019-11-19T14:35:34Z
dc.date.available2019-11-19T14:35:34Z
dc.date.issued2019-11-19
dc.identifier.urihttp://hdl.handle.net/2077/62559
dc.description.abstractThis thesis presents a study done on optimizing machine learning model updates. The department of Quality and Functionality in a multinational telecommunication company is searching for an optimal solution to the problem of when, and how, to trigger a training cycle of a statistical model on their test execution dataset. We have investigated techniques regarding the possibilities of optimizing a statistical model update. A case-study has been conducted, using a telecommunication company as a case subject company.sv
dc.language.isoengsv
dc.subjectmachine learning modelsv
dc.subjectoptimizationsv
dc.subjectchanging modelssv
dc.titleDepartment of Computer Science and Engineering UNIVERSITY OF GOTHENBURG CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2018 Statistical Model Update Optimization in Industrial Practicesv
dc.typetext
dc.setspec.uppsokTechnology
dc.type.uppsokM2
dc.contributor.departmentGöteborgs universitet/Institutionen för data- och informationsteknikswe
dc.contributor.departmentUniversity of Gothenburg/Department of Computer Science and Engineeringeng
dc.type.degreeStudent essay


Files in this item

No Thumbnail [100%x80]

This item appears in the following Collection(s)

Show simple item record