• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Chemistry and Molecular Biology / Institutionen för kemi och molekylärbiologi (2012-)
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kemi och molekylärbiologi
  • View Item
  •   Home
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Chemistry and Molecular Biology / Institutionen för kemi och molekylärbiologi (2012-)
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kemi och molekylärbiologi
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regulators of Membrane Fluidity

Abstract
Caenorhabditis elegans PAQR-2 (a homolog of the mammalian AdipoR1 and AdipoR2 proteins) and IGLR-2 (homolog of the mammalian LRIG proteins) form a complex at the plasma membrane that regulates fatty acid desaturation to protect against saturated fatty acid-induced membrane rigidification. Maintenance of membrane homeostasis is fundamental for most cellular processes and, given its importance, robust regulatory mechanisms must exist that adjust lipid composition to compensate for dietary variation. To better understand this phenomenon, we performed forward genetic screens in C. elegans and isolated mutants that improve tolerance to dietary saturated fatty acids. These include eight new loss of function alleles of the novel gene fld-1, one loss of function allele of acs-13 and one gain of function allele of paqr-1. fld-1 encodes a homolog of the human TLCD1/2 transmembrane proteins. The FLD-1 protein is localized on plasma membranes and mutations in the fld-1 gene help to suppress the phenotypes of paqr-2 mutant worms, including its characteristic membrane fluidity defects. The wild-type C. elegans FLD-1 and human TLCD1/2 proteins do not regulate the synthesis of long-chain polyunsaturated fatty acids but rather limit their incorporation into phospholipids. C. elegans acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1. The ACS-13 protein is localized to mitochondrial membranes where it likely activates and channels long chain fatty acids for import. In human cells, ACSL1 activity potentiates lipotoxicity by the saturated fatty acid palmitate (16:0) because it depletes the cells of membrane-fluidizing unsaturated fatty acids. Echoing our findings in C. elegans, knockdown of ASCL1 in human cells using siRNA also protects against the membrane-rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown. A novel gain-of-function allele of PAQR-1, a paralog of PAQR-2, takes over the role of PAQR-2 for downstream effectors. Through genetic interaction studies and domain swapping experiments we showed that the transmembrane domains of PAQR-2 are responsible for its functional requirement for IGLR-2. Conversely, PAQR-1 itself does not require IGLR-2 for its function. The less conserved N-terminal cytoplasmic domains of PAQR-1 and PAQR-2 likely regulate the activity of these proteins, speculatively via a “ball and chain” mechanism similar to that found in certain voltage-gated channels. We conclude that inhibition of membrane fluidity regulators, such as fld-1 or acs-13, or a gain-of-function allele of paqr-1 can suppress paqr-2 mutant phenotypes through different mechanisms, which suggests that paqr-2 regulates membrane fluidity in more than one way. Despite acting differently, the effects of these three mutations converge into lowering SFA levels while increasing the PUFA levels within phospholipids, and show that membrane homeostasis is likely essential for our ability to tolerate dietary saturated fats.
Parts of work
PAPER I: Ruiz et al. Membrane fluidity is regulated by the C. elegans transmembrane protein FLD-1 and its human homologs TLCD1/2.Elife. 2018 Dec 4;7. pii: e40686. doi: 10.7554/eLife.40686. https://elifesciences.org/articles/40686
 
PAPER II: Ruiz et al. Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity.Elife. 2019 Nov 26;8. pii: e47733. doi: 10.7554/eLife.47733. https://elifesciences.org/articles/47733
 
PAPER III: Busayavalasa et al. Leveraging a Gain-of-Function Allele of C. elegans PAQR-1 to Elucidate Membrane Homeostasis by PAQR Proteins. Manuscript submitted.
 
Degree
Doctor of Philosophy
University
University of Gothenburg. Faculty of Science
Institution
Department of Chemistry and Molecular Biology ; Institutionen för kemi och molekylärbiologi
Disputation
fredagen den 12 juni 2020kl. 9.00 i Gösta Sandels, Institutionen för kemi och molekylärbiologi, Medicinaregatan 9B, Göteborg
Date of defence
2020-06-12
E-mail
kiran.kumar.busayavalasa@gu.se
URI
http://hdl.handle.net/2077/63100
Collections
  • Doctoral Theses / Doktorsavhandlingar Institutionen för kemi och molekylärbiologi
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
View/Open
gupea_2077_63100_1.pdf (71.80Kb)
gupea_2077_63100_4.pdf (1.356Mb)
Date
2020-04-29
Author
Busayavalasa, Kiran
Keywords
PAQR,LRIG, membrane fluidity
Publication type
Doctoral thesis
ISBN
978-91-7833-920-4 (PDF)
978-91-7833-921-1 (Print)
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV