• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • View Item
  •   Home
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geometrical and percolative properties of spatially correlated models

Abstract
This thesis consists of four papers dealing with phase transitions in various models of continuum percolation. These models exhibit complicated dependencies and are generated by different Poisson processes. For each such process there is a parameter, known as the intensity, governing its behavior. By varying the value of this parameter, the geometrical and topological properties of these models may undergo dramatic and rapid changes. This phenomenon is called a phase transition and the value at which the change occur is called a critical value. In Paper I, we study the topic of visibility in the vacant set of the Brownian interlacements in Euclidean space and the Brownian excursions process in the unit disc. For the vacant set of the Brownian interlacements we obtain upper and lower bounds of the probability of having visibility in some direction to a distance r in terms of the probability of having visibility in a fixed direction of distance r. For the vacant set of the Brownian excursions we prove a phase transition in terms of visibility to infinity (with respect to the hyperbolic metric). We also determine the critical value and show that at the critical value there is no visibility to infinity. In Paper II we compute the critical value for percolation in the vacant set of the Brownian excursions process. We also show that the Brownian excursions process is a hyperbolic analogue of the Brownian interlacements. In Paper III, we study the vacant set of a semi scale invariant version of the Poisson cylinder model. In this model it turns out that the vacant set is a fractal. We determine the critical value for the so-called existence phase transition and what happens at the critical value. We also compute the Hausdorff dimension of the fractal whenever it exists. Furthermore, we prove that the fractal exhibits a nontrivial connectivity phase transition for dimensions four and greater and that the fractal is totally disconnected for dimension two. In the three dimensional case we prove a partial result showing that the fractal restricted to a plane is totally disconnected with probability one. In Paper IV we study a continuum percolation process, the random ellipsoid model, generated by taking the intersection of a Poisson cylinder model in d dimensions and a subspace of dimension k. For k between 2 and d-2, we show that there is a non-trivial phase transition concerning the expected number of ellipsoids in the cluster of the origin. When k=d-1 this critical value is zero. We compare these results with results for the classical Poisson Boolean model.
Parts of work
Visibility in the vacant set of the Brownian interlacements and the Brownian excursion process. ::doi::10.30757/ALEA.v16-36
 
Percolation of the vacant set of the Brownian excursions process. Manuscript
 
The fractal cylinder process: existence and connectivity phase transitio. Submitted
 
Properties of a random ellipsoid model. Submitted
 
Degree
Doctor of Philosophy
University
Göteborgs universitet. Naturvetenskapliga fakulteten
Institution
Department of Mathematical Sciences ; Institutionen för matematiska vetenskaper
Disputation
10:15 Hörsal Pascal, Matematiska vetenskaper, Chalmers Tvärgata 3, Göteborg. https://chalmers.zoom.us/j/631607089
Date of defence
2020-04-17
E-mail
olofel@chalmers.se
URI
http://hdl.handle.net/2077/63419
Collections
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
View/Open
Thesis frame för en sammanläggningsavhandling (12.61Mb)
spikblad (153.8Kb)
Date
2020-03-10
Author
Hallqvist Elias, Karl Olof
Keywords
continuum percolation,
brownian excursions
brownian interlacements
poisson cylinder model
fractal percolation
Publication type
Doctoral thesis
ISBN
978-91-7833-872-6
978-91-7833-873-3
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV