Show simple item record

dc.contributor.authorRYAZANOV, Igor
dc.date.accessioned2020-10-06T06:55:32Z
dc.date.available2020-10-06T06:55:32Z
dc.date.issued2020-10-06
dc.identifier.urihttp://hdl.handle.net/2077/66646
dc.description.abstractThis work examines the applicability of the deep learning models to pattern recognition in acoustic ocean data. The features of the dataset include noise, data scarcity and the lack of labeled samples. A deep learning model is proposed for the task of automatic wake detection. It takes advantage of the availability of an expert in the marine science domain while using data generation and robustness techniques to enhance performance. The model shows encouraging results, although its performance decreases with heavily unbalanced data and the introduction of noise.sv
dc.language.isoengsv
dc.subjectmachine learningsv
dc.subjectdeep learningsv
dc.subjectpattern recognitionsv
dc.subjectacoustic data analysissv
dc.subjectshipping datasv
dc.subjectdata augmentationsv
dc.subjectnoise robustnesssv
dc.subjectclassification with data imbalancesv
dc.subjectexpert-in-the-loop frameworksv
dc.titleDeep Learning for Deep Water: Robust classification of ship wakes with expert in the loopsv
dc.title.alternativeDeep Learning for Deep Water: Robust classification of ship wakes with expert in the loopsv
dc.typetext
dc.setspec.uppsokTechnology
dc.type.uppsokH2
dc.contributor.departmentGöteborgs universitet/Institutionen för data- och informationsteknikswe
dc.contributor.departmentUniversity of Gothenburg/Department of Computer Science and Engineeringeng
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record