Show simple item record

dc.contributor.authorKostaras, Giannis
dc.date.accessioned2021-01-26T13:22:04Z
dc.date.available2021-01-26T13:22:04Z
dc.date.issued2021-01-26
dc.identifier.urihttp://hdl.handle.net/2077/67362
dc.description.abstractMolecular solar thermal storage materials are proposed as a clean, renewable energy solution for a world with ever increasing energy needs. Norbornadiene is an organic compound suitable for molecular solar thermal storage systems. Computational methods such as density functional theory offer solutions for improvement of norbornadiene-based molecular solar thermal storage systems via theoretical spectroscopy. Machine learning methods, such as artificial neural networks may offer useful insights to improve theoretical spectroscopy methods.sv
dc.language.isoengsv
dc.titleOpto-vibrational coupling in molecular solar thermal storage materials: Electronic structure calculations and neural-networkbased analysis Giannis Kostaras Degree projectsv
dc.typeTexteng
dc.setspec.uppsokPhysicsChemistryMaths
dc.type.uppsokH2
dc.contributor.departmentUniversity of Gothenburg/Department of Physicseng
dc.contributor.departmentGöteborgs universitet / Institutionen för fysikswe
dc.type.degreestudent essayeng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record