• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Physics / Institutionen för fysik
  • Doctoral Theses / Doktorsavhandlingar Institutionen för fysik
  • Redigera dokument
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Physics / Institutionen för fysik
  • Doctoral Theses / Doktorsavhandlingar Institutionen för fysik
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning Applications - From image analysis to medical diagnosis

Sammanfattning
Deep learning is a subcategory of machine learning and artificial intelligence. Instead of using explicit rules to perform a desired task as in standard algorithmic approaches, machine-learning algorithms autonomously learn from data to determine the rules for the task at hand. The idea of deep learning has been around since the 1950s but was for a long time limited by available computational power and amount of training data. Once overcome these problems, in recent years, deep learning has made great advances in solving various problems. In this thesis, I show how deep learning can be applied in image analysis and medical diagnosis, while outperforming standard algorithmic methods and simpler machine-learning methods. I begin with showing that a convolutional neural network trained with simulated particle images is able to track experimental single particles, even in poor illumination conditions. I then show how this inspired the development of an all-in-one software to design, train and validate deep-learning solutions for digital microscopy, from particle tracking and characterization in 2D and 3D to the segmentation, characterization and counting of biological cells and image transformation. I show that this software package can be further used to develop a generative adversarial neural network to virtually stain brightfield images of cells, replacing the traditional chemical staining for a downstream analysis of biological features. I then move on from applications in microscopy and image analysis to show the potential of deep learning in medical diagnosis. I show that dense neural networks perform better than simpler machine-learning algorithm and the clinical standard in the diagnosis of a genetic disease and in the prediction of short- and long-term morbidity in patients with congenital-heart-disease. At last, I have shown that a neural network- powered strategy for testing and isolating individuals adapts to the parameters of a disease outbreak achieves an epidemic containment. The interdisciplinary nature of the work in this thesis has allowed the application of new technologies developed in the field of physics to solve problems in the fields of biology and biomedicine, as well as overcoming barriers for the continued revolutionization of deep learning in microscopy.
Delarbeten
Digital video microscopy enhanced by deep learning Saga Helgadottir, Aykut Argun and Giovanni Volpe Optica 6, 506-513 (2019) ::doi::10.1364/OPTICA.6.000506
 
Quantitative Digital Microscopy with Deep Learning Benjamin Midtvedt, Saga Helgadottir, Aykut Argun, Jesús Pineda, Daniel Midtvedt and Giovanni Volpe Applied Physics Reviews 8, 011310 (2021) ::doi::10.1063/5.0034891
 
Extracting quantitative biological information from brightfield cell images using deep learning Saga Helgadottir, Benjamin Midtvedt, Jesús Pineda, Alan Sabirsh, Caroline B. Adiels, Stefano Romeo, Daniel Midtvedt and Giovanni Volpe arXiv preprint arXiv:2012.12986 (2020)
 
Virtual genetic diagnosis for familial hypercholesterolemia powered by machine learning Ana Pina, Saga Helgadottir, Rosellina Margherita Mancina, Chiara Pavanello, Carlo Pirazzi, Tiziana Montalcini, Roberto Henriques, Laura Calabresi, Olov Wiklund, M Paula Macedo, Luca Valenti, Giovanni Volpe and Stefano Romeo European Journal of Preventive Cardiology, p.2047487319898951 (2020) ::doi::10.1177/2047487319898951
 
Enhanced prediction of atrial fibrillation and mortality among patients with congenital heart disease using big data and deep learning Kok Wai Giang , Saga Helgadottir, Mikael Dellborg, Giovanni Volpe and Zacharias Mandalenakis (submitted 2021)
 
Improving epidemic testing and containment strategies using machine learning Laura Natali, Saga Helgadottir, Onofrio M. Marago and Giovanni Volpe Machine Learning: Science and Technology (2021) ::doi::10.1088/2632-2153/abf0f7
 
Examinationsnivå
Doctor of Philosophy
Universitet
Göteborgs universitet. Naturvetenskapliga fakulteten
Institution
Department of Physics ; Institutionen för fysik
Disputation
Onsdagen den 16 juni 2021, kl. 9:00, Hörsal PJ, Fysikgården 2b och via Zoom
Datum för disputation
2021-06-16
E-post
saga.helgadottir@physics.gu.se
URL:
http://hdl.handle.net/2077/67506
Samlingar
  • Doctoral Theses / Doktorsavhandlingar Institutionen för fysik
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Fil(er)
gupea_2077_67506_1.pdf (27.15Mb)
spikblad (208.7Kb)
Datum
2021-05-11
Författare
Helgadottir, Saga
Nyckelord
deep learning
neural networks
image analysis
microscopy
medical diagnosis
Publikationstyp
Doctoral thesis
ISBN
978-91-8009-366-8
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV