• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Economics / Institutionen för nationalekonomi med statistik
  • Kandidatuppsatser / Institutionen för nationalekonomi och statistik
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Economics / Institutionen för nationalekonomi med statistik
  • Kandidatuppsatser / Institutionen för nationalekonomi och statistik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Option Modelling by Deep Learning

Optionsmodellering genom djup inlärning

Abstract
In this thesis we aim to provide a fully data driven approach for modelling financial derivatives, exclusively using deep learning. In order for a derivatives model to be plausible, it should adhere to the principle of no-arbitrage which has profound consequences on both pricing and risk management. As a consequence of the Black-Scholes model in Black & Scholes (1973), arbitrage theory was born. Arbitrage theory provides the necessary and sufficient formal conditions for a model to be free of arbitrage and the two most important results are the first and second fundamental theorems of arbitrage. Intuitively, under so called market completeness, the current price of any derivative/contingent claim in the model must reflect all available information and the price is unique, irrespective of risk-preferences. In order to arrive at an explicit arbitrage free price of any contingent claim, a choice must be made in order to simulate the distribution of the asset in the future. Traditionally this is achieved by the theory of random processes and martingales. However, the choice of random process introduces a type of model risk. In Buehler et al. (2019), a formal theory was provided under which hedging and consecutively pricing can be achieved irrespective of choice of model through deep learning. However, the challenge of choosing the right random process still remains. Recent developments in the area of generative modelling and in particular the successful implementation of generative adversarial networks (GAN) in Goodfellow et al. (2014) may provide a solution. Intuitively speaking, a GAN is a game theoretic learning based model in which two components, called the generator and discriminator, competes. The objective being to approximate the distribution of a given random variable. The objective of this thesis is to extend the deep hedging algorithm in Buehler et al. (2019) with a generative adversarial network. In particular we use the TimeGAN model developed by Yoon et al. (2019). We illustrate model performance in a simulation environment using geometric Brownian motion and Black-Scholes prices of options. Thus, the objective our model is to approximate the theoretically optimal hedge using only sample paths of the trained generator. Our results indicates that this objective is achieved, however in order to generalise to real market data, some tweaks to the algorithm should be considered.
Degree
Student essay
URI
http://hdl.handle.net/2077/67655
Collections
  • Kandidatuppsatser / Institutionen för nationalekonomi och statistik
View/Open
Thesis frame (3.596Mb)
Date
2021-02-10
Author
Klausson, Niclas
Tisell, Victor
Keywords
Deep learning
deep hedging
generative adversial networks
arbitrage pricing
Series/Report no.
202102:103
Uppsats
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV