• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Computer Science and Engineering / Institutionen för data- och informationsteknik
  • Masteruppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of role stereotypes for classes in UML class diagrams using machine learning

Abstract
Software development process is becoming inherently complex in recent decades. To reduce the complexity in the development process developers, software practitioners are constantly looking for newer approach. One approach can be understanding the software design for instance, the UML models earlier in the software development process. For analyzing UML models, one could use knowledge about role-stereotypes. Knowledge about role stereotypes can help during software quality assessment, for summarizing software and thereby to ease the understanding of software designs. This study presents a machine learning-based approach for classifying the role-stereotype of classes in UML class diagrams. We have established a ground truth by manually labelling 391+ classes from 15 open source projects (using various programming languages). We analyze the performance of the machine learning approach with the manually established ground truth. Besides, we show a comparison between our approach and another machine learning approach from an earlier case study which is based on source code. Furthermore, we compare different machine learning (ML) algorithms to find out the best ML algorithm for classifying our dataset. Another noteworthy contribution of this study is an analysis of which features are most relevant for classifying classes into role stereotype and which features generate the best classification performance. According to our findings, the J48 classifier performs best when classifying the raw dataset and the Random Forest classifier performs best on a more balanced dataset which has been obtained by applying SMOTE oversampling. By using our classifier software developers can analyze patterns in their software design at the early stage of software development process.
Degree
Student essay
URI
http://hdl.handle.net/2077/67955
Collections
  • Masteruppsatser
View/Open
gupea_2077_67955_1.pdf (19.20Mb)
Date
2021-03-03
Author
Ahmed, Jobaer
Huang, Maoyi
Keywords
role-stereotypes
machine learning algorithm
classification
data analysis
data mining
UML class diagram
software design
software engineering
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV