Visa enkel post

dc.contributor.authorIvehag, Adam
dc.contributor.authorDoran, Tom
dc.contributor.authorQuach, Joakim
dc.contributor.authorJakobsson, Ludvig
dc.date.accessioned2021-07-01T14:19:47Z
dc.date.available2021-07-01T14:19:47Z
dc.date.issued2021-07-01
dc.identifier.urihttp://hdl.handle.net/2077/69019
dc.description.abstractI detta projekt presenteras grundläggande teori inom studien av stokastiska differential ekvationer (SDE:er) samt ett urval av viktiga metoder för numerisk approximation av lösningar. Detta görs på ett praktiskt vis genom kapitel som ett efter ett presenterar grundläggande begrepp samt underbygger dessa med numeriska exempel. Till varje exempel ges en beskrivning i texten och Python–kod återfinns i bilagorna. Rapporten behandlar främst Euler–Maruyama– metoden för simulering av lösningar till SDE:er och resultat kopplade till denna. Till resultaten hör stark och svag konvergensordning samt linjär stabilitet. Konvergensordning studeras även för Milstein–metoden och därefter ges en presentation av den stokastiska kedjeregeln. För en djupare förståelse av bakomliggande teori i de numeriska exemplen ges även en beskrivning av Monte Carlo–metoder. Resultaten tillämpas inom finansiell matematik genom en studie av Cox–Ingersoll–Ross–processen för beskrivning räntors rörelser. I den första bilagan ges ytterligare en djupdykning i teorin genom en guide för intuitionen bakom den viktiga Itô–integralen.sv
dc.language.isoswesv
dc.titleNumeriska simuleringar av stokastiska differentialekvationersv
dc.title.alternativeNumerical simulations of stochastic differential equationssv
dc.typeText
dc.setspec.uppsokPhysicsChemistryMaths
dc.type.uppsokM2
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.type.degreeStudent essay


Filer under denna titel

Thumbnail

Dokumentet tillhör följande samling(ar)

Visa enkel post