Show simple item record

dc.contributor.authorKarlander, William
dc.contributor.authorKyhn, Georg
dc.contributor.authorSahlin, Erik
dc.date.accessioned2022-07-08T11:14:53Z
dc.date.available2022-07-08T11:14:53Z
dc.date.issued2022-07-08
dc.identifier.urihttps://hdl.handle.net/2077/72737
dc.description.abstractRapporten studerar fr¨amst Eulers symplektiska och St¨ormer-Verlets metoder applicerade p˚a hamiltonska problem. Metoderna appliceras numeriskt p˚a tre olika hamiltonska problem och j¨amf¨ors med andra numeriska metoder i form av Eulers explicita metod och Eulers implicita metod. Det f¨orsta hamiltonska problemet som studeras ¨ar en ideal pendel. Det andra ¨ar ett hamiltonskt system best˚aende av tv˚a himlakroppar. Och det tredje ¨ar ett molekyldynamikproblem best˚aende av tv˚a atomer. I exemplen uppvisas egenskaper som sedan definieras och bevisas konkret f¨or generella fall. Av dessa egenskaper ing˚ar definiering av invarianter och symplektiska avbildningar. Bevis av metodernas bevarande av invarianter och bevis av att vissa stegmetoder ¨ar symplektiska genomf¨ors. Det visas ¨aven vilka problem som har symplektiska l¨osningar Keplers problem ¨ar ett av exemplen som granskas, d¨ar modelleras tv˚a himlakroppar med den ena som kretsar runt den andra. De fyra stegmetoderna (Eulers explicita, implicita och symplektiska metoder samt St¨ormer-Verlets metod) appliceras och avvikelser fr˚an den exakta l¨osningen j¨amf¨ors, specifikt visas omloppsbana, avvikelse av energi, vinkelmoment och position skapat av de numeriska metoderna. Rapporten visar att alla hamiltonska system har en symplektisk avbildning. Ytterligare visar rapporten att Eulers symplektiska metod och St¨ormer-Verlets metod ¨ar symplektiska. Det visas ¨aven att symplektiska numeriska metoder ¨ar n¨astan energibevarande p˚a hamiltonska problem. Detta g¨ors genom att utf¨ora simuleringar som numeriskt visar att Eulers symplektiska och St¨ormer-Verlets metoder bevarar energin inom ett begr¨ansat intervall ¨over exponentiellt l˚ang tid. Bakl¨anges felanalys introduceras sedan som omr˚ade f¨or att f¨orklara varf¨or symplektiska numeriska metoder har denna egenskap.en_US
dc.language.isosween_US
dc.titleGeometrisk numerisk integrering av differentialekvationeren_US
dc.title.alternativeGeometric Numerical Integration of Differential Equationsen_US
dc.typeText
dc.setspec.uppsokPhysicsChemistryMaths
dc.type.uppsokM2
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.type.degreeStudent essay


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record