Prime number races

dc.contributor.authorElofsson, Carl
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.date.accessioned2024-08-12T12:39:37Z
dc.date.available2024-08-12T12:39:37Z
dc.date.issued2024-08-12
dc.description.abstractIn this thesis we investigate the behaviour of primes in arithmetic progressions, with a focus on the phenomenon known as Chebyshev’s bias. Under the assumption of the Generalized Riemann Hypothesis and the Linear Independence Hypothesis, we prove that there is a bias towards quadratic non-residues. Additionally we extend the investigation to the setting of function fields. In the function field setting, we investigate the behaviour of prime polynomials in residue classes modulo a fixed monic polynomial. Moreover, we prove that for an irreducible polynomial m there is a bias towards quadratic non-residues modulo m.sv
dc.identifier.urihttps://hdl.handle.net/2077/82860
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.titlePrime number racessv
dc.typetext
dc.type.degreeStudent essay
dc.type.uppsokH2

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Master_Thesis_Carl Elofsson_2024.pdf
Size:
696.82 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.68 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections