Spintronic oscillator networks for unconventional computing accelerators

dc.contributor.authorGonzález, Victor H.
dc.date.accessioned2025-03-17T13:10:40Z
dc.date.available2025-03-17T13:10:40Z
dc.date.issued2025-03-17
dc.description.abstractNetworks of coupled oscillators are fundamental to various natural and technological processes. For instance, networks of biological neurons exhibiting oscillatory behavior are crucial for cognitive functions, memory, and perception. Brain waves, arising from the synchronized activity of neural populations, play a crucial role in decision-making and learning. Hence, oscillator networks have gained significant interest for their ability to perform complex computations through collective dynamics. This thesis explores spintronic and magnonics-based oscillators, which offer advantages over electronic counterparts by utilizing magnetization dynamics instead of charge currents. These oscillators are smaller, potentially more energy-efficient, and can be engineered into networks for unconventional computing architectures. Leveraging their nonlinear behavior, we advance two key approaches for implementing spintronic oscillator networks. First, we further develop spatially-resolved networks, where arrays of spin Hall nano-oscillators (SHNOs) have been shown to work as proof-of-concept spintronic Ising machines. Through experimental, theoretical, and computational studies, we demonstrate that voltage control over the local magnetic anisotropy can be used to fine-tune both individual SHNO behavior and coupling between SHNOs, enabling flexible and scalable architectures for spatially-resolved SHNO-based Ising machines. Second, we demonstrate a time-multiplexed oscillator network, where spin wave pulses propagate in a Yttrium Iron Garnet (YIG) delay line. This demonstration acts as a proof of concept for the potential that the implementation of magnonic systems holds. We further develop our approach, optimizing its performance through numerical modeling and expanding its computational complexity by adding a global biasing term to our experimental demonstration. The results presented in this thesis highlight the potential of spintronic oscillators as key building blocks for next-generation unconventional computing technologies.sv
dc.gup.defencedate2025-04-25
dc.gup.defenceplaceFredagen den 25.04.2025, kl. 10.00 i PJ-salen, Institutionen för fysik, Origovägen 6B, Göteborg.sv
dc.gup.departmentDepartment of Physics ; Institutionen för fysiksv
dc.gup.dissdb-fakultetMNF
dc.gup.originUniversity of Gothenburg. Faculty of Science and Technologysv
dc.identifier.isbn978-91-8115-212-8 (printed)
dc.identifier.isbn978-91-8115-213-5 (pdf)
dc.identifier.urihttps://hdl.handle.net/2077/85522
dc.language.isoengsv
dc.relation.haspartV. H. González, A. Litvinenko, A. Kumar, R. Khymyn, J. Åkerman, “Spintronic devices as next-generation computation accelerators”, Current Opinion in Solid State and Materials Science. 31, 101173 (2024). https://doi.org/10.1016/j.cossms.2024.101173sv
dc.relation.haspartV. H. González, R. Khymyn, H. Fulara, A. A. Awad, J. Åkerman, “Voltage control of frequency, effective damping, and threshold current in nano-constriction-based spin Hall nano-oscillators”, Appl. Phys. Lett. 121 (25), 252404 (2022). https://doi.org/10.1063/5.0128786sv
dc.relation.haspartA. Kumar, A. K. Chaurasiya, V. H. González, N. Behera, A. Alemán, R. Khymyn, A. A. Awad, J. Åkerman, “Spin-wave-mediated mutual synchronization and phase tuning in spin Hall nano-oscillators”, Nature Physics 21, 245–252 (2025). https://doi.org/10.1038/s41567-024-02728-1sv
dc.relation.haspartR. V. Ovcharov, V. H. González, A. Litvinenko, J. Åkerman, R.Khymyn, “A numerical model for time-multiplexed Ising machines based on delay-line oscillators”, arXiV preprint arXiv:2406.07197 (2024). https://doi.org/10.48550/arXiv.2406.07197sv
dc.relation.haspartLitvinenko, A., Khymyn, R., González, V.H. et al. A spinwave Ising machine. Commun Phys 6, 227 (2023). https://doi.org/10.1038/s42005-023-01348-0sv
dc.relation.haspartV. H. González, A. Litvinenko, R. Khymyn, J. Åkerman, , “Global biasing using a hardware-based artificial Zeeman term in spinwave Ising machines”, Appl. Phys. Lett. 124 (9), 092409 (2024). https://doi.org/10.1063/5.0185888sv
dc.subjectspintronicssv
dc.subjectmagnonicssv
dc.subjectoscillatorssv
dc.subjectunconventional computingsv
dc.subjectneuromorphic computingsv
dc.subjectcondensed matter physicssv
dc.titleSpintronic oscillator networks for unconventional computing acceleratorssv
dc.typeText
dc.type.degreeDoctor of Philosophysv
dc.type.svepDoctoral thesiseng

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
17-03-2025-thesis-manuscript-without-scientific-articles.pdf
Size:
45.93 MB
Format:
Adobe Portable Document Format
Description:
Thesis manuscript
No Thumbnail Available
Name:
Spikblad Victor Gonzalez.pdf
Size:
209.87 KB
Format:
Adobe Portable Document Format
Description:
Nailing page

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.68 KB
Format:
Item-specific license agreed upon to submission
Description: