Studies in Language Structure using Deep Learning

dc.contributor.authorEk, Adam
dc.date.accessioned2023-08-15T09:27:56Z
dc.date.available2023-08-15T09:27:56Z
dc.date.issued2023-08-15
dc.description.abstractThis thesis deals with the discovery, prediction, and utilization of structural patterns in language using deep learning techniques. The thesis is divided into two sections. The first section gives an introduction to the tools used and the structures in language we are interested in. The second part presents five papers addressing the research questions. The first three papers deals with discovering and predicting patterns. In the first paper, we explore methods of composing word embeddings to predict morphological features. The second paper deals with predicting the depths of nested structures. The remaining three papers deal with using structures in language to make semantic predictions. The third paper explores using dependency trees to predict semantic predicate-argument structures using a rule-based system. The fourth paper explores modeling linguistic acceptability using syntactic and semantic labels. The fifth paper deals with exploring how punctuation affects natural language inference.en
dc.gup.defencedate2023-09-08
dc.gup.defenceplaceFredagen den 8:e September 2023, J222, Humanistenen
dc.gup.departmentDepartment of Philosophy, Linguistics and Theory of Science ; Institutionen för filosofi, lingvistik och vetenskapsteorien
dc.gup.dissdb-fakultetHF
dc.gup.maildf90aqx@gmail.comen
dc.gup.originGöteborgs universitet. Humanistiska fakultetenswe
dc.gup.originUniversity of Gothenburg. Faculty of Humanitieseng
dc.identifier.urihttps://hdl.handle.net/2077/76766
dc.language.isoengen
dc.relation.hasparthttps://aclanthology.org/2020.udw-1.9/ https://aclanthology.org/2021.findings-acl.67.pdf https://aclanthology.org/2021.law-1.5/ https://aclanthology.org/W19-6108/ https://aclanthology.org/2020.pam-1.15/en
dc.subjectComputational Linguistics, Language Structures, Deep Learningen
dc.titleStudies in Language Structure using Deep Learningen
dc.typeText
dc.type.degreeDoctor of Philosophyen
dc.type.svepDoctoral thesiseng

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
kappa-24.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
Description:
Thesis
No Thumbnail Available
Name:
spikblad.pdf
Size:
62.76 KB
Format:
Adobe Portable Document Format
Description:
Spikblad

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.68 KB
Format:
Item-specific license agreed upon to submission
Description: