Translating Path-based Logics to Modal mu-Calculus
| dc.contributor.author | Lim, Fong Yuan | |
| dc.contributor.department | Göteborgs universitet/Institutionen för filosofi, lingvistik och vetenskapsteori | swe | 
| dc.contributor.department | Göteborg University/Department of Philosophy, Linguistics and Theory of Science | eng | 
| dc.date.accessioned | 2024-10-07T13:07:03Z | |
| dc.date.available | 2024-10-07T13:07:03Z | |
| dc.date.issued | 2024-10-07 | |
| dc.description.abstract | The modal μ-calculus Lμ is an expressive temporal logic defined on full transition systems. Lμ merely has immediate neighbour modalities and no direct way to specify properties on a path-by-path basis, so it is remarkable that Lμ can simulate logics such as linear temporal logic (LTL) whose semantics are based on linear paths, where an LTL formula ϕ is said to hold at a state s if ϕ holds on every path starting from s. However, expressing such path-based properties in Lμ is generally nontrivial. As a baseline, one may find a translation by constructing an automaton as an intermediate step. However, a naive implementation of such a method may cause a non-elementary blowup in the size of the translation. A translation obtained this way also tends to reflect the structure of the automaton rather than that of the original input formula. In this thesis, we investigate a more syntactic approach to translate path-based logics into Lμ. In particular, we analyse the method given by [Dam94] to translate LTL into Lμ in depth, and reformulate it in several aspects. Furthermore, we generalise the method to the fragment of the linear-time μ-calculus LTμ where fixpoint variables in a formula occur exactly once and are not nested. These translations achieve a worst-case doubly exponential blowup in formula size. For simpler inputs, directly inspecting the translations may yield insights as to how Lμ accommodates path-based properties. | sv | 
| dc.identifier.uri | https://hdl.handle.net/2077/83594 | |
| dc.language.iso | eng | sv | 
| dc.setspec.uppsok | HumanitiesTheology | |
| dc.subject | master thesis logic, path-based logic, modal mu-calculus | sv | 
| dc.title | Translating Path-based Logics to Modal mu-Calculus | sv | 
| dc.title.alternative | Translating Path-based Logics to Modal mu-Calculus | sv | 
| dc.type | Text | |
| dc.type.degree | Student essay | |
| dc.type.uppsok | H1 | 
Files
Original bundle
1 - 1 of 1
 No Thumbnail Available 
- Name:
 - Lim FY Path-based.pdf
 - Size:
 - 594.51 KB
 - Format:
 - Adobe Portable Document Format
 - Description:
 - master thesis
 
License bundle
1 - 1 of 1
 No Thumbnail Available 
- Name:
 - license.txt
 - Size:
 - 4.68 KB
 - Format:
 - Item-specific license agreed upon to submission
 - Description: