Group Invariant Convolutional Boltzmann Machines

dc.contributor.authorLindström, Maria
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.date.accessioned2020-12-04T13:11:54Z
dc.date.available2020-12-04T13:11:54Z
dc.date.issued2020-12-04
dc.description.abstractWe investigate group invariance in unsupervised learning in the context of certain generative networks based on Boltzmann machines. Specifically, we introduce a generalization of restricted Boltzmann machines which is adapted to input data that is acted upon by any compact group G. This is done by using certain G-equivariant convolutions between layers. We prove that the deep belief networks constructed from such Boltzmann machines define probability distributions that are invariant with respect to the action of G.sv
dc.identifier.urihttp://hdl.handle.net/2077/67106
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectConvolutional Boltzmann Machines, Convolutional neural networks, artificial neural networks, machine learning, group invariance, group equivariancesv
dc.titleGroup Invariant Convolutional Boltzmann Machinessv
dc.title.alternativeGroup Invariant Convolutional Boltzmann Machinessv
dc.typetext
dc.type.degreeStudent essay
dc.type.uppsokH2

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
gupea_2077_67106_1.pdf
Size:
786.51 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.68 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections