Using sentiment analysis on Reddit to predict stock returns

dc.contributor.authorNilsson, Love
dc.contributor.authorAndersson Wikingsson, Max
dc.contributor.departmentUniversity of Gothenburg/Department of Economics
dc.contributor.departmentGöteborgs universitet/Institutionen för nationalekonomi med statistik
dc.contributor.departmentUniversity of Gothenburg/Department of Business Administration
dc.contributor.departmentGöteborgs universitet/Företagsekonomiska institutionen
dc.date.accessioned2022-07-01T09:06:36Z
dc.date.available2022-07-01T09:06:36Z
dc.date.issued2022-07-01
dc.description.abstractThis thesis explores if sentiment analysis can be utilized to predict meme stock returns by analyzing social media activity on the Reddit forum WallStreetBets. We further look at how meme stocks differ from non-meme stocks in their return predictability on this forum. To test this, we run OLS regressions and panel regressions on aggregated daily data collected from Reddit. We find that the sentiment of WallStreetBets does have significant correlation with meme stock returns within our sample. Our results show significant differences between the examined meme stocks and non-meme stocks. Despite not being able to prove a causal relationship between the WallStreetBets activity and meme stock returns, we consider our findings promising for further research.en
dc.identifier.urihttps://hdl.handle.net/2077/72514
dc.language.isoengen
dc.relation.ispartofseries202206:306en
dc.setspec.uppsokSocialBehaviourLaw
dc.titleUsing sentiment analysis on Reddit to predict stock returnsen
dc.title.alternativeAttitydanalys på Reddit för att förutspå aktie avkastningen
dc.typetext
dc.type.degreeStudent essay
dc.type.uppsokM2

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Using sentiment analysis on Reddit to predict stock returns.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description:
Thesis frame

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.68 KB
Format:
Item-specific license agreed upon to submission
Description: