On the Reduction of Quantum Teams
No Thumbnail Available
Date
2020-09-04
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this thesis, a reduction procedure on quantum teams is defined. Physically, this reduction procedure can be seen as an attempt to describe the measurement results of a certain (quantum mechanics) experiment purely classically, i.e. with hidden variables. In complete agreement with the expectation, the failure of this attempt indicates that genuine quantum effects are in play; the reduction procedure halts without having converted the team to a multi-team. It can therefore be
used to demonstrate contextuality in a given quantum team. The reduction procedure conserves the corresponding probability table as well as all the properties expressible in Quantum Team Logic. Finally, an attempt has been made to solve the open problem of the axiomatisation of QTL formulas that agree with quantum mechanics. Absence of references to literature indicates original work from the author.
Description
Keywords
Quantum Team Logic, Logical Bell inequalities, Quantum contextuality, Dependence logic, Quantum entanglement