Principal Component Analysis and the Cross-Sectional Variation of Returns

dc.contributor.authorRamovic, Armin
dc.contributor.authorÅkerman, Mikael
dc.contributor.departmentUniversity of Gothenburg/Department of Economics
dc.contributor.departmentGöteborgs universitet/Institutionen för nationalekonomi med statistik
dc.contributor.departmentUniversity of Gothenburg/Department of Business Administration
dc.contributor.departmentGöteborgs universitet/Företagsekonomiska institutionen
dc.date.accessioned2021-06-23T13:59:36Z
dc.date.available2021-06-23T13:59:36Z
dc.date.issued2021-06-23
dc.description.abstractWe utilize Principal Component Analysis (PCA), a dimensionality reduction technique, on a set of 142 risk factors, including macroeconomic factors, proposed in financial literature to construct factor models with high explanatory powers when analysing the cross-sectional variation of portfolio returns. We apply a Fama and Macbeth (1973) two-pass regression to estimate risk premia commanded by our principal components. We perform a static PCA, which is what we call the conventional application of PCA, and a rolling window PCA, where the data is split into overlapping windows and where the PCA constructs principal components separately in each window. This allows us to construct two sets of factor models: one set from the static PCA, and one set from the rolling window PCA. The benchmark model for our research is the Fama and French (2015) five-factor asset pricing model. Our results suggest that both sets of factor models outperform the benchmark model in capturing the cross-sectional variation of returns. Furthermore, we find that the addition of macroeconomic factors adds explanatory power to our models. Finally, we find that the factor models from the rolling window PCA do not outperform the factor models from the static PCA.sv
dc.identifier.urihttp://hdl.handle.net/2077/68736
dc.language.isoengsv
dc.relation.ispartofseries202106:236sv
dc.relation.ispartofseriesUppsatssv
dc.setspec.uppsokSocialBehaviourLaw
dc.subjectPrincipal Component Analysissv
dc.subjectPCAsv
dc.subjectprincipal componentssv
dc.subjectcross-sectional variation of returnssv
dc.subjectrisk premiasv
dc.subjectasset pricingsv
dc.subjectdemensionality reductionsv
dc.subjectrisk factorssv
dc.subjectmachine learningsv
dc.titlePrincipal Component Analysis and the Cross-Sectional Variation of Returnssv
dc.title.alternativePrincipalkomponentanalys och Tvärsnittsvariationen i Portföljers Avkastningsv
dc.typetext
dc.type.degreeStudent essay
dc.type.uppsokM2

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
gupea_2077_68736_1.pdf
Size:
1004.78 KB
Format:
Adobe Portable Document Format
Description:
Thesis frame

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.68 KB
Format:
Item-specific license agreed upon to submission
Description: