Statistical Modelling of Pedestrian Flows

dc.contributor.authorHåkansson, Erik
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.date.accessioned2019-06-13T13:55:39Z
dc.date.available2019-06-13T13:55:39Z
dc.date.issued2019-06-13
dc.description.abstractPedestrian counts and in particular their relation to the buildings in the vicinity of the streetandtothestructureofthestreetnetworkisofcentralinterestinthespacesyntax field. This report is concerned with using statistical techniques to model pedestrian countsandinparticularhowthesecountsvaryovertheday. Ofinterestiswhetherthe variationoverthedayforastreetcanbepredictedbasedonitsdensity type,describing the nearby buildings, and street type, describing its role in in the city’s overall street network. UsingdatafromAmsterdam,LondonandStockholmthehour-by-hourpedestriancounts are modelled with the so-called functional ANOVA method, using the aforementioned typestodividethestreetsintogroups.Additionally,theeffectofthepresenceofschools, storesandpublictransportstopsnearthestreetsonpedestriancountsisconsidered.The modelisfittedinaBayesianframeworkusingthe integrated nested Laplace approximation technique. The results indicate that this model works well but that it might be somewhat too rigid to capture all the variability in the data, failing to capture some of the differencebetween groupsand between thecities. Somepossible extensionsto the modeltoremedythisaresuggested.sv
dc.identifier.urihttp://hdl.handle.net/2077/60462
dc.setspec.uppsokPhysicsChemistryMaths
dc.titleStatistical Modelling of Pedestrian Flowssv
dc.typetext
dc.type.degreeStudent essay
dc.type.uppsokH2

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
gupea_2077_60462_1.pdf
Size:
6.21 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.68 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections