The noncommutative Shilov boundary

dc.contributor.authorJohansson, Jimmy
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.date.accessioned2016-12-06T11:31:53Z
dc.date.available2016-12-06T11:31:53Z
dc.date.issued2016-12-06
dc.description.abstractWe introduce Arveson's generalization of the Shilov boundary to the noncommutative case and give a proof based on the work of Hamana of the existence of the Shilov boundary ideal. Moreover, we describe the Shilov boundary for a noncommutative analog of the algebra of holomorphic functions on the unit polydisk Dn and for a q-analog of the algebra of holomorphic functions on the unit ball in the space of symmetric complex 2 x 2 matrices.sv
dc.identifier.urihttp://hdl.handle.net/2077/49978
dc.setspec.uppsokPhysicsChemistryMaths
dc.titleThe noncommutative Shilov boundarysv
dc.typetext
dc.type.degreeStudent essay
dc.type.uppsokH2

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
gupea_2077_49978_1.pdf
Size:
558.04 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.68 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections