Minimal Surfaces- A proof of Bernstein´s theorem

dc.contributor.authorLarsson, Jenny
dc.contributor.departmentUniversity of Gothenburg/Department of Mathematical Scienceeng
dc.contributor.departmentGöteborgs universitet/Institutionen för matematiska vetenskaperswe
dc.date.accessioned2015-06-10T10:36:29Z
dc.date.available2015-06-10T10:36:29Z
dc.date.issued2015-06-10
dc.description.abstractThis thesis is meant as an introduction to the subject of minimal surfaces, i.e. surfaces having mean curvature zero everywhere. In a physical sense, minimal surfaces can be thought of as soap lms spanning a given wire frame. The main object will be to prove Bernstein's theorem, which states that a minimal surface in R3 which is de ned in the whole parameter plane is linear, meaning it is a plane. We will give two proofs of this theorem, both involving methods from complex analysis, and relying on a proposition stating that we can always reparametrize the surface into so called isothermal parameters.sv
dc.identifier.urihttp://hdl.handle.net/2077/39302
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectMatematiksv
dc.titleMinimal Surfaces- A proof of Bernstein´s theoremsv
dc.title.alternativeMinimal Surfaces- A proof of Bernstein´s theoremsv
dc.typetext
dc.type.degreeStudent essay
dc.type.uppsokH2

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
gupea_2077_39302_1.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.68 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections