• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Doctoral Theses / Doktorsavhandlingar
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
  • View Item
  •   Home
  • Doctoral Theses / Doktorsavhandlingar
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Apoptosis-related mechanisms in the immature brain after hypoxia-ischemia

Abstract
Aims: To characterize the activation of caspases-3 and extracellular signal-regulated kinase (ERK) in the neonatal brain after hypoxia-ischemia (HI) injury and evaluate the neuroprotective effect of X-linked inhibitor of apoptosis (XIAP) protein, erythropoietin (EPO) and the non-erythropoietic derivative asialoEPO. Methods: Seven-day-old rats or 9-day-old mice were subjected to HI. At certain time points, animals were sacrificed and brains were collected for measurement of enzyme activity, immunoblotting, immunohistochemistry, immunoprecipitation, brain damage assessment and proteomic analysis.Results: In the normal control animals, basal caspase-3-like activity decreased 49% with age from postnatal day 10 to 13. After HI, the neonatal rat brain displayed a 25-fold increased caspase-3-like activity 24h post-HI. Transgenic overexpression of XIAP (TG-XIAP) produced significant neuroprotection after HI, reducing the brain tissue loss from 54.4 ± 4.1 mm3 (mean ± SEM) in wild type mice to 33.1 ± 2.1 mm3 in the TG-XIAP mice. Caspase-3-like and caspase-9-like activity was significantly reduced in the TG-XIAP mice after HI. ERK activation (P-ERK) was evident immediately after HI as judged by immunoblotting and immunohistochemistry in multiple brain regions, peaking at 30 min to 1 h post-HI. The P-ERK-positive cells co-localized with injury markers. Systemic administration (i.p.) of EPO or asialoEPO produced 52% and 55% reduction of brain infarct volume, respectively, although the plasma levels of asialoEPO had dropped below the detection limits (1 pM) at the onset of HI and those of EPO were in the nM range. In an attempt to identify the relevant molecular mechanisms responsible for this, up-regulation of synaptosomal-associated protein-25kDa (SNAP-25) was identified in the phosphoproteome, and ERK activation was significantly reduced in the asialoEPO treatment animals after HI.Conclusions: 1. Caspases and apoptotic mechanisms may be more important in the immature brain because of the higher levels of caspases during development. 2. Significant neuroprotection after neuronal XIAP overexpression indicates that administration of XIAP-related peptides might prove a useful strategy for neuroprotection after asphyxia in neonates. 3. ERK activation in neurons after HI in the neonatal brain occurred early, and mainly in cells displaying signs of damage. 4. EPO and the non-erythropoietic derivative asialoEPO both provided significant neuroprotection when administered 4 h prior to HI. Considering that EPO is already used in clinical, pediatric use, EPO-related compounds may quickly find their way into therapeutic applications aimed at neuroprotection.
University
Göteborgs universitet/University of Gothenburg
Institution
Department of Physiology
Avdelningen för fysiologi
Disputation
Fysiologens föreläsningssal, Inge Schiöler, F1405, Medicinaregatan 11, kl. 09.00
Date of defence
2004-04-16
URI
http://hdl.handle.net/2077/16144
Collections
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Date
2004
Author
Wang, Xiaoyang 1965-
Keywords
hypoxia-ischemia
neonatal
caspase
ERK
XIAP
EPO
asialoEPO
brain
Publication type
Doctoral thesis
ISBN
91-628-6030-5
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV