• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Physics / Institutionen för fysik
  • Doctoral Theses / Doktorsavhandlingar Institutionen för fysik
  • Redigera dokument
  •   Startsida
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Physics / Institutionen för fysik
  • Doctoral Theses / Doktorsavhandlingar Institutionen för fysik
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards quantitative single cell analysis using optical tweezers and microfluidics

Sammanfattning
Experiments on single cells have the potential to uncover information that would not be possible to obtain with traditional biological techniques, which only reflect the average behavior of a population of cells. In the averaging process, information regarding heterogeneity and cellular dynamics, that may give rise to a nondeterministic behavior at the population level, is lost. In this thesis I have demonstrated how optical tweezers, microfluidics and fluorescence microscopy can be combined to acquire images with high spatial and temporal resolution that allow quantitative information regarding the response of single cells to environmental changes to be extracted. Two main approaches for achieving the environmental changes are presented, one where optically trapped cells are moved with respect to a stationary flow, and one where the fluid media are moved relative to cells positioned stationary on the bottom of a microfluidic device. Both approaches allow precise and reversible environmental changes to be performed. The first approach achieves environmental changes in less than 0.2 s, and is thus suited for studies of fast cellular processes. This is approximately ten times faster than the second approach, which is, however, more convenient for studies over longer periods of time where statistical information on a large number of individual cells are requested. The experimental approaches are verified on different signalling pathways in Saccharomyces cerevisiae, where the main focus is the HOG pathway. The cellular response is followed either via brightfield images, where the volume changes of cells are monitored, or through fluorescence images where the spatio-temporal distributions of GFP tagged proteins are extracted. A possible approach to increase the throughput using stationary flows is demonstrated by introducing holographic optical tweezers, allowing several cells to simultaneously be trapped and exposed to environmental changes. Automated image analysis combined with 3D manipulation is shown to allow the temporal resolution to be increased, or enable studies over longer periods of time thanks to the reduced photobleaching.
Delarbeten
I. Eriksson, E., Enger, J., Nordlander, B., Erjavec, N., Ramser, K., Goksör, M., Hohmann, S., Nyström, T. & Hanstorp, D. (2007). A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab on a Chip, 7, 71-76.::doi::10.1039/b613650h
 
II. Eriksson, E., Scrimgeour, J., Granéli, A., Ramser, K., Wellander, R., Enger, J., Hanstorp, D. & Goksör, M. (2007). Optical manipulation and microfluidics for studies of single cell dynamics. Journal of Optics A: Pure and Applied Optics, 9, S113-S121.::doi::10.1088/1464-4258/9/8/S02
 
III. Eriksson, E., Scrimgeour, J., Enger, J. & Goksör, M. (2007). Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes. Proceedings of SPIE, Vol. 6592, 65920P.::doi::10.1117/12.721859
 
IV. Eriksson, E., Keen, S., Leach, J., Goksör, M. & Padgett, M. J. (2007). The effect of external forces on discrete motion within holographic optical tweezers. Optics Express, 15(26), 18268-18274.::doi::10.1364/OE.15.018268
 
V. Eriksson, E., Engström, D., Scrimgeour, J. & Goksör, M. (2009). Automated focusing of nuclei for time lapse experiments on single cells using holographic optical tweezers. Optics Express, 17(7), 5585-5594.::doi::10.1364/OE.17.005585
 
VI. Eriksson, E., Sott, K., Lundqvist, F., Sveningsson, M., Scrimgeour, J., Hanstorp, D., Goksör, M. & Granéli, A. (2009). An experimental approach for quantitative studies of single cells in dynamically changing environments. Unpublished manuscript.
 
VII. Schaber, J., Angel Adrover, M., Eriksson, E., Pelet, S., Petelenz, E., Klein, D., Posas, F., Goksör, M., Peter, M., Hohmann, S. & Klipp E. (2009). Biophysical properties of Saccharomyces cerevisiae and their relation to HOG pathway activation. Unpublished manuscript.
 
Examinationsnivå
Doctor of Philosophy
Universitet
University of Gothenburg. Faculty of Science.
Institution
Department of Physics ; Institutionen för fysik
Disputation
Onsdagen den 29 april 2009, kl 9.00, sal Pascal, Matematiska vetenskaper, Hörsalsvägen 1
Datum för disputation
2009-04-29
E-post
emma.eriksson@physics.gu.se
URL:
http://hdl.handle.net/2077/19485
Samlingar
  • Doctoral Theses / Doktorsavhandlingar Institutionen för fysik
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
Fil(er)
Spikblad (88.63Kb)
Thesis frame (1.841Mb)
Datum
2009-04-03
Författare
Eriksson, Emma
Nyckelord
Optical tweezers
holographic optical tweezers
microfluidics
lab-on-a-chip
fluorescence microscopy
spatial light modulator
single cell analysis
quantitative systems biology
GFP
Saccharomyces cerevisiae
Publikationstyp
Doctoral thesis
ISBN
978-91-628-7751-4
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV