Multivariate outbreak detection
Sammanfattning
On-line monitoring is needed to detect outbreaks of diseases like influenza. Surveillance is also needed for other kinds of outbreaks, in the sense of an increasing expected value after a constant period. Information on spatial location or other variables might be available and may be utilized. We adapted a robust method for outbreak detection to a multivariate case. The relation between the times of the onsets of the outbreaks at different locations (or some other variable) was used to determine the sufficient statistic for surveillance. The derived maximum likelihood estimator of the outbreak regression was semi-parametric in the sense that the baseline and the slope were non-parametric while the distribution belonged to the exponential family. The estimator was used in a generalized likelihood ratio surveillance method. The method was evaluated with respect to robustness and efficiency in a simulation study and applied to spatial data for detection of influenza outbreaks in Sweden.
Utgivare
University of Gothenburg
Samlingar
Fil(er)
Datum
2010Författare
Schiöler, Linus
Frisén, Marianne
Nyckelord
Exponential family
Generalised likelihood
Ordered regression
Regional data
Surveillance
Publikationstyp
report
ISSN
0349-8034
Serie/rapportnr.
Research Report
2010:2
Språk
eng