• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • View Item
  •   Home
  • Faculty of Science / Naturvetenskapliga fakulteten
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Index theory in geometry and physics

Abstract
This thesis contains three papers in the area of index theory and its applications in geometry and mathematical physics. These papers deal with the problems of calculating the charge deficiency on the Landau levels and that of finding explicit analytic formulas for mapping degrees of Hölder continuous mappings. The first paper deals with charge deficiencies on the Landau levels for non-interacting particles in R^2 under a constant magnetic field, or equivalently, one particle moving in a constant magnetic field in even-dimensional Euclidian space. The K-homology class that the charge of a Landau level defines is calculated in two steps. The first step is to show that the charge deficiencies are the same on every particular Landau level. The second step is to show that the lowest Landau level, which is equivalent to the Fock space, defines the same class as the K-homology class on the sphere defined by the Toeplitz operators in the Bergman space of the unit ball. The second and third paper uses regularization of index formulas in cyclic cohomology to produce analytic formulas for the degree of Hölder continuous mappings. In the second paper Toeplitz operators and Henkin-Ramirez kernels are used to find analytic formulas for the degree of a function from the boundary a relatively compact strictly pseudo-convex domain in a Stein manifold to a compact connected oriented manifold. In the third paper analytic formulas for Hölder continuous mappings between general even-dimensional manifolds are produced using a pseudo-differential operator associated with the signature operator.
Degree
Doctor of Philosophy
University
Göteborgs universitet. Naturvetenskapliga fakulteten
Institution
Department of Mathematical Sciences ; Institutionen för matematiska vetenskaper
Disputation
Fredagen den 20 maj 2011, kl. 10.15, Hörsal Pascal, Matematiska Vetenskaper, Chalmers tvärgata 3
Date of defence
2011-05-20
E-mail
goffeng@chalmers.se
URI
http://hdl.handle.net/2077/24979
Collections
  • Doctoral Theses / Doktorsavhandlingar Institutionen för matematiska vetenskaper
  • Doctoral Theses from University of Gothenburg / Doktorsavhandlingar från Göteborgs universitet
View/Open
Thesis (1.831Mb)
Spikblad (73.37Kb)
Errata (108.7Kb)
Date
2011-04-06
Author
Goffeng, Magnus
Keywords
Index theory
Cyclic cohomology
Regularized index formulas
Toeplitz operators
Pseudo-differential operators
Quantum Hall effect
Publication type
Doctoral thesis
ISBN
978-91-628-8281-5
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV