• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Philosophy,Lingustics and Theory of Science / Institutionen för filosofi, lingvistik och vetenskapsteori
  • Kandidatuppsatser /Institutionen för filosofi, lingvistik och vetenskapsteori
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Philosophy,Lingustics and Theory of Science / Institutionen för filosofi, lingvistik och vetenskapsteori
  • Kandidatuppsatser /Institutionen för filosofi, lingvistik och vetenskapsteori
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Morley’s number of countable models

Sammanfattning
A theory formulated in a countable predicate calculus can have at most 2א0 nonisomorphic countable models. In 1961 R. L. Vaught [9] conjected that if such a theory has uncountably many countable models, then it has exactly 2א0 countable models. This would of course follow immediately if one assumed the continuum hypothesis to be true. Almost ten years later, M. Morley [5] proved that if a countable theory has strictly more than א1 countable models, then it has 2א0 countable models. This leaves us with the possibility that a theory has exactly א1 , but not 2א0 countable models — and even today, Vaught’s question remains unanswered. This paper is an attempt to shed a little light on Morley’s proof.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/25474
Samlingar
  • Kandidatuppsatser /Institutionen för filosofi, lingvistik och vetenskapsteori
Fil(er)
gupea_2077_25474_1.pdf (176.2Kb)
Datum
2011-05-10
Författare
Blanck, Rasmus
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV