• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Philosophy,Lingustics and Theory of Science / Institutionen för filosofi, lingvistik och vetenskapsteori
  • Magisteruppsatser/ Institutionen för filosofi, lingvistik och vetenskapsteori
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Philosophy,Lingustics and Theory of Science / Institutionen för filosofi, lingvistik och vetenskapsteori
  • Magisteruppsatser/ Institutionen för filosofi, lingvistik och vetenskapsteori
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

On abstract model theory and defining well-orderings

Sammanfattning
In this paper we will study the expressive power, measured by the ability to define certain classes, of some extensions of first order logic. The central concepts will be definability of classes of ordinals and the well-ordering number w of a logic. First we discuss the partial orders ≤, ≤P C and ≤RP C on logics and how these relate to each other and to our definability concept. Then we study the division between bounded and unbounded logics. An interrest- ing result in this direction is the theorem due to Lopez-Escobar stating that L∞ω is weak in the sense that it does not define the entire class of well-orderings, even though it has no well-ordering number, whereas Lω1 ω1 is strong in the same sense. In this paper we will study the expressive power, measured by the ability to define certain classes, of some extensions of first order logic. The central concepts will be definability of classes of ordinals and the well-ordering number w of a logic. First we discuss the partial orders ≤, ≤P C and ≤RP C on logics and how these relate to each other and to our definability concept. Then we study the division between bounded and unbounded logics. An interrest- ing result in this direction is the theorem due to Lopez-Escobar stating that L∞ω is weak in the sense that it does not define the entire class of well-orderings, even though it has no well-ordering number, whereas Lω1 ω1 is strong in the same sense.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/25506
Samlingar
  • Magisteruppsatser/ Institutionen för filosofi, lingvistik och vetenskapsteori
Fil(er)
gupea_2077_25506_1.pdf (413.4Kb)
Datum
2011-05-16
Författare
Salo, Tommi
Nyckelord
Logik
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV