• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Faculty of Humanities / Humanistiska fakulteten
  • Department of Philosophy, Linguistics and Theory of Science / Institutionen för filosofi, lingvistik och vetenskapsteori
  • Licentiat Theses / Licentiatavhandlingar
  • Redigera dokument
  •   Startsida
  • Faculty of Humanities / Humanistiska fakulteten
  • Department of Philosophy, Linguistics and Theory of Science / Institutionen för filosofi, lingvistik och vetenskapsteori
  • Licentiat Theses / Licentiatavhandlingar
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Metamathematical fixed points

Sammanfattning
This thesis concerns the concept of metamathematical fixed points. After an introduction, we survey the field of metamathematics, from la fin du siècle to present. We are especially interested in the notion of fixed points, theorems on the existence of various kinds of fixed points, and their applications to metamathematics. The second part of the thesis is a technical investigation of sets of fixed points. Given some recursively enumerable, consistent extension T of Peano arithmetic, we define for each formula θ(x) the set Fix^T (θ) := {δ : T |- δ ↔ θ(δ)}. Our main result on these sets is that they are all Σ_1-complete. Furthermore, we define for each formula θ(x), the set Fix_Γ^T (θ) := {δ : T |- δ ↔ θ(δ)}, where δ is a sentence in Γ. Using methods of Bennet, Bernardi, Guaspari, Lindström, and Smullyan, we characterise these sets for formulas in Γ' ⊃ Γ, and provide partial results for formulas in Γ. We give a sufficient condition on recursive sets to be a set of fixed points, and show that such sets exists. We also present a sufficient condition for a recursively enumerable set of Γ-sentences to be a set of fixed points of a Γ-formula. In the following section, we study the structure of sets of fixed points ordered under set inclusion, and prove certain properties on these structures. Finally, we connect our research to another open problem of metamathematics, and state some possible further work.
URL:
http://hdl.handle.net/2077/25513
Samlingar
  • Licentiat Theses / Licentiatavhandlingar
Fil(er)
gupea_2077_25513_1.pdf (1010.Kb)
Datum
2011-05
Författare
Blanck, Rasmus
Nyckelord
Logik
Publikationstyp
licentiate thesis
ISSN
0347-5794
Serie/rapportnr.
Philosophical Communications Red series
41
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV