Show simple item record

dc.contributor.authorSabashvili, Andro
dc.date.accessioned2013-08-30T12:18:48Z
dc.date.available2013-08-30T12:18:48Z
dc.date.issued2013-08-30
dc.identifier.isbn978-91-628-8766-7
dc.identifier.urihttp://hdl.handle.net/2077/32919
dc.description.abstractThis work describes a new formalism for Fermionic thermal Greens functions that are discretized in imaginary time. The discretization makes the thermal Greens function periodic in imaginary (Matsubara) frequency space and requires a generalisation of the Dyson equation and Luttinger-Ward-Baym-Kadanoff functional. A Pade method is used to perform an analytic continuation of the periodized Matsubara Greens function to real frequencies which conserves the spectral weight and thus the discontinuity of the corresponding real time Greens function at t = 0. Due to the Matsubara Greens function periodicity, the discrete imaginary frequency space is relatively small which allows calculations at the extremely high precision which is necessary to perform a reliable Pade fit. We use the method to compute the single particle spectral function and energy loss function for doped bilayer graphene in the two-band limit, described by parabolic dispersion and Coulomb interaction. Calculations are performed in both the random phase approximation (RPA) and the fully self-consistent GW approximation. The formalism is also applied to dynamical mean field the- ory calculations using iterated perturbation theory (IPT) for the paramagnetic Hubbard model.sv
dc.language.isoengsv
dc.relation.haspart1. Hugo U. R. Strand, Andro Sabashvili, Mats Granath, Bo Hellsing, and Stellan Östlund, Dynamical mean field theory phase-space extension and critical properties of the finite temperature Mott transition, Phys. Rev. B 83, 205136 (2011) ::doi::10.1103/PhysRevB.83.205136sv
dc.relation.haspart2. Mats Granath, Andro Sabashvili, Hugo U. R. Strand, and Stellan Östlund, Discretized thermal Green’s functions, Ann. Phys. 524, No. 3–4, 147–152 (2012) ::doi::10.1002/andp.201100262sv
dc.relation.haspart3. Andro Sabashvili, Stellan Östlund, and Mats Granath, Bilayer graphene spectral function in the random phase approximation and self-consistent GW approximation, To be published in Phys. Rev. B.sv
dc.subjectcondensed matter physicssv
dc.subjectGreens functionsv
dc.subjectgraphenesv
dc.subjectDMFTsv
dc.subjectRPAsv
dc.subjectGWsv
dc.titlePeriodized Thermal Greens Functions and Applicationssv
dc.typeText
dc.type.svepDoctoral thesiseng
dc.gup.mailandro.sabashvili@physics.gu.sesv
dc.type.degreeDoctor of Philosophysv
dc.gup.originGöteborgs universitet. Naturvetenskapliga fakultetensv
dc.gup.departmentDepartment of Physics ; Institutionen för fysiksv
dc.gup.defenceplaceTid: 10:00AM, Plats: KB, Chalmers Campus Johanneberg, Kemig ̊arden 4.sv
dc.gup.defencedate2013-09-23
dc.gup.dissdb-fakultetMNF


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record