Periodized Thermal Greens Functions and Applications
Sammanfattning
This work describes a new formalism for Fermionic thermal Greens functions that are discretized in imaginary time. The discretization makes the thermal Greens function periodic in imaginary (Matsubara) frequency space and requires a generalisation of the Dyson equation and Luttinger-Ward-Baym-Kadanoff functional. A Pade method is used to perform an analytic continuation of the periodized Matsubara Greens function to real frequencies which conserves the spectral weight and thus the discontinuity of the corresponding real time Greens function at t = 0. Due to the Matsubara Greens function periodicity, the discrete imaginary frequency space is relatively small which allows calculations at the extremely high precision which is necessary to perform a reliable Pade fit. We use the method to compute the single particle spectral function and energy loss function for doped bilayer graphene in the two-band limit, described by parabolic dispersion and Coulomb interaction. Calculations are performed in both the random phase approximation (RPA) and the fully self-consistent GW approximation. The formalism is also applied to dynamical mean field the- ory calculations using iterated perturbation theory (IPT) for the paramagnetic Hubbard model.
Delarbeten
1. Hugo U. R. Strand, Andro Sabashvili, Mats Granath, Bo Hellsing, and Stellan Östlund, Dynamical mean field theory phase-space extension and critical properties of the finite temperature Mott transition, Phys. Rev. B 83, 205136 (2011) ::doi::10.1103/PhysRevB.83.205136 2. Mats Granath, Andro Sabashvili, Hugo U. R. Strand, and Stellan Östlund, Discretized thermal Green’s functions, Ann. Phys. 524, No. 3–4, 147–152 (2012) ::doi::10.1002/andp.201100262 3. Andro Sabashvili, Stellan Östlund, and Mats Granath, Bilayer graphene spectral function in the random phase approximation and self-consistent GW approximation, To be published in Phys. Rev. B.
Examinationsnivå
Doctor of Philosophy
Universitet
Göteborgs universitet. Naturvetenskapliga fakulteten
Institution
Department of Physics ; Institutionen för fysik
Disputation
Tid: 10:00AM, Plats: KB, Chalmers Campus Johanneberg, Kemig ̊arden 4.
Datum för disputation
2013-09-23
E-post
andro.sabashvili@physics.gu.se
Datum
2013-08-30Författare
Sabashvili, Andro
Nyckelord
condensed matter physics
Greens function
graphene
DMFT
RPA
GW
Publikationstyp
Doctoral thesis
ISBN
978-91-628-8766-7
Språk
eng