• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Kandidatuppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Kandidatuppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Digital Filter Design Using Semidefinite Programming

Sammanfattning
Abstract This thesis explores an optimization based approach to the design problem of digital filters. We show how a digital filter in the form of a discrete linear time-invariant causal system can be characterized by a non-negative trigonometric polynomial, which in turn can be represented by a positive semidefinite matrix known as Gram matrix representation. This allows us to utilize the framework of linear conic optimization, especially semidefinite programming to obtain filters based on given specifications and optimal with respect to some property of the filter. The optimization is carried out with respect to minimizing the stopband energy as well as the passband ripple. We cover both FIR and IIR filters. The model is implemented in MATLAB using the modelling language CVX and solved using SeDuMi.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/38237
Samlingar
  • Kandidatuppsatser
Fil(er)
gupea_2077_38237_1.pdf (460.8Kb)
Datum
2015-02-11
Författare
Samuelsson, Moa
Johansson, Jimmy
Samuelsson, Fabian
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV