• English
    • svenska
  • English 
    • English
    • svenska
  • Login
View Item 
  •   Home
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • View Item
  •   Home
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Minimal Surfaces- A proof of Bernstein´s theorem

Minimal Surfaces- A proof of Bernstein´s theorem

Abstract
This thesis is meant as an introduction to the subject of minimal surfaces, i.e. surfaces having mean curvature zero everywhere. In a physical sense, minimal surfaces can be thought of as soap lms spanning a given wire frame. The main object will be to prove Bernstein's theorem, which states that a minimal surface in R3 which is de ned in the whole parameter plane is linear, meaning it is a plane. We will give two proofs of this theorem, both involving methods from complex analysis, and relying on a proposition stating that we can always reparametrize the surface into so called isothermal parameters.
Degree
Student essay
URI
http://hdl.handle.net/2077/39302
Collections
  • Masteruppsatser
View/Open
gupea_2077_39302_1.pdf (1.522Mb)
Date
2015-06-10
Author
Larsson, Jenny
Keywords
Matematik
Language
eng
Metadata
Show full item record

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV