• English
    • svenska
  • svenska 
    • English
    • svenska
  • Logga in
Redigera dokument 
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • Redigera dokument
  •   Startsida
  • Student essays / Studentuppsatser
  • Department of Mathematical Sciences / Institutionen för matematiska vetenskaper
  • Masteruppsatser
  • Redigera dokument
JavaScript is disabled for your browser. Some features of this site may not work without it.

Minimal Surfaces- A proof of Bernstein´s theorem

Minimal Surfaces- A proof of Bernstein´s theorem

Sammanfattning
This thesis is meant as an introduction to the subject of minimal surfaces, i.e. surfaces having mean curvature zero everywhere. In a physical sense, minimal surfaces can be thought of as soap lms spanning a given wire frame. The main object will be to prove Bernstein's theorem, which states that a minimal surface in R3 which is de ned in the whole parameter plane is linear, meaning it is a plane. We will give two proofs of this theorem, both involving methods from complex analysis, and relying on a proposition stating that we can always reparametrize the surface into so called isothermal parameters.
Examinationsnivå
Student essay
URL:
http://hdl.handle.net/2077/39302
Samlingar
  • Masteruppsatser
Fil(er)
gupea_2077_39302_1.pdf (1.522Mb)
Datum
2015-06-10
Författare
Larsson, Jenny
Nyckelord
Matematik
Språk
eng
Metadata
Visa fullständig post

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV
 

 

Visa

VisaSamlingarI datumordningFörfattareTitlarNyckelordDenna samlingI datumordningFörfattareTitlarNyckelord

Mitt konto

Logga inRegistrera dig

DSpace software copyright © 2002-2016  DuraSpace
gup@ub.gu.se | Teknisk hjälp
Theme by 
Atmire NV